
60493800

I';:J 1:\ CO~OL DATA
~ r:J CORJ'OR,t\T10N

NOS/BE 1 REFERENCE MANUAL

CONTROL DATA®
CYBER 170 SERIES
CYBER 70 SERIES MODELS 71,72, 73, 74
6000 SERIES COMPUTER SYSTEMS

CONTROL STATEMENT INDEX

ABS 4-4 LABEL 4-50
ACCOUNT 4-5 LABELMS 4-53
ADDSET 4-5 LIMIT 4-55
ALTER 4-6 LISTMF 4-56
ATTACH 4-7 LOAD 4-56
AUDIT 4-8 LOADPF 4-57

BEGIN 5-23 MAP 4-59
BKSP 4-10 MODE 4-60

MOUNT 4-61
CATALOG 4-10
CKP 4-12 PAUSE 4-61
COMBINE 4-13 PURGE 4-62
COMMENT 4-13
COMPARE 4-14 RECOVER 4-62
COPY 4-15 REDUCE 4-63
COPYBCD 4-16 RENAME 4-63
COPYBF 4-16 REQUEST 4-64
COPYBR 4-19 RESTART 4-72
COPYCF 4-16 RETURN 4-73
COPYCR 4-19 REVERT 5-28
COPYN 4-20 REWIND 4-74
COPYSBF 4-25 RFL 4-74
COPYXS 4-25 ROUTE 4-75

DELSET 4-26 SAVEPF 4-83
DISPLAY 5-12 SET 5-13
DISPOSE 4-27 SETNAME 4-84
DMP 4-29 SKIP 5-10
DMPECS 4-31 SKIPB 4-84
DSMOUNT 4-32 SKIPF 4-85
DUMPF 4-32 SUMMARY 4-86

SWITCH 4-86
EDITLIB 4-35 SYSBULL 4-86
ELSE 5-10
ENDIF 5-11 TRANSF 4-87
ENDW 5-11 TRANSPF 4-89
EXECUTE 4-47
EXIT 4-47 UNLOAD 4-92
EXTEND 4-49

VSN 4-92
GETPF 4-50

WHILE 5-11
IFE 5-9

60493800

&J 1::\ CO~OL DATA
\::I ~ CO~O~TlON

NOS/BE 1 REFERENCE MANUAL

CONTROL DAT A®
CYSER 170 SERIES
CYSER 70 SERIES MODELS 71,72, 73, 74
6000 SERIES COMPUTER SYSTEMS

REVISION

A

(11-1-75)

B

(7-16-76)

C

(3-15-77)

D

(8-19-77) ~

Publication No .
. 60493800

REVISION RECORD
DESCRIPTION

Manual released.

Updated to reflect release of features 145 (844-41/44 Support), 159 and 163 (Job Management

and System Control Point Enhancement).

Updated to reflect NOS/BE 1.2 at PSR level 447. New features documented include 844 disk drive

full/half track recording mode, programmable format control (PFC) for 580 line printers, support

of CYBER 170 Model 176 with 819 disk drive (device type mnemonic AH), 679 tape unit with

6250 cpi density capability, and CYBER Control Language (section 5). References to 604 and 607

tape units are removed. This edition obsoletes all previous editions.

Updated to support NOS/BE 1.2 at PSR level 454 and to make editorial and technical corrections.

Support of CDC CYBER 170 Model 171 is included.

Address comments concerning
this manual to:

REVISION LETTERS I, 0, Q AND X ARE NOT USED

Control Data Corporation
Publications and Graphics Division
4201 North Lexington. Avenue

© 1975, 1976, 1977
Control Data Corporation
Printed in the United States of America

ii

St. Paul, Minnesota 55112

or use Comment Sheet in the
back of this manual

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars in the
margins or by a dot near the page number if the entire page is affected. A bar by the page number indicates pagina­
tion rather than content has changed.

J Page Revision Page Revision Page Revision

Front Cover - 2-15 A 3-36 A
Inside Front Cover - 2-16 C 3-37 A
Title Page - 2-17 A 3-38 A
ii D 2-18 A 3-39 A
iii D 3-1 A 3-40 C
iv D 3-2 A 3-41 C
iv-a/iv-b D 3-3 A 3-42 C
v/vi D 3-4 C 3-43 C
vii C 3-5 B 4-1 D
viii D 3-6 B 4-2 D
ix C 3-7 A 4-2.1/4-2.2 D
x C 3-8 A 4-3 A
1-1 B 3-9 D 4-4 B
1-2 B 3-10 A 4-5 C
1-3 A 3-11 A 4-6 D
1-4 A 3-12 A 4-7 C
1-5 D 3-13 A 4-8 D
1-6 C 3-14 A 4-9 A
1-7 A 3-15 A 4-10 D
1-8 A 3-16 B 4-11 A
1-9 C 3-17 A 4-12 A
1-10 A 3-18 C 4-13 A
1-11 C 3-19 A 4-14 A
1-12 A 3-20 A 4-15 A
1-13 C 3-21 A 4-16 C
2-1 A 3-22 A 4-17 A
2-2 A 3-23 A 4-18 A
2-3 A 3-24 A 4-19 A
2-4 A 3-25 A 4-20 A
2-5 C 3-26 A 4-21 A
2-6 A 3-27 C 4-22 A
2-7 C 3-28 C 4-23 A
2-8 A 3-29 C 4-24 A
2-9 A 3-30 B 4-25 C
2-10 A 3-31 C 4-26 A
2-11 A 3-32 C 4-27 B
2-12 A 3-33 C 4-28 B
2-'"13 C 3-34 C 4-29 .t\
2-14 C 3-35 C

60493800 D Iii

Page Revision Page Revision Page Revision

4-30 A 4-78 B 5-33 C
4-31 A 4-79 C 5-34 C
4-32 A 4-80 C 5-35 C
4-33 D 4-81 C 5-36 C
4-34 A 4-82 C 6-1 C

I 4-35 A 4-83 D 6-2 D

4-36 A 4-84 C 6-3 C
4-37 A 4-85 C 64 C
4-38 A 4-86 C 6-5 C
4-39 B 4-87 C 6-6 C
4-40 B 4-88 C 6-7 D

J 4-41 B 4-89 D 6-8 C
4-42 B 4-90 C 6-9 C
4-43 C 4-91 C 6-10 D
4-44 A 4-92 C 6-11 D
4-45 C 4-93 C 6-12 C
4-46 A 5-1 C 6-13 C
4-47 A 5-2 C 6-14 C
4-48 C 5-3 C 6-15 C
4-49 A 5-4 C 6-16 C
4-50 A 5-5 C 6-17 C
4-51 C 5-6 C 6-18 C
4-52 C 5-7 C 6-19 C
4-53 C 5-8 C 6-20 C
4-54 D 5-9 C 6-21 C
4-55 C 5-10 C 6-22 D

4-56 C 5-11 C 6-23 C
4-57 D 5-12 C 6-24 C
4-58 C 5-13 C 6-25 C
4-59 C 5-14 C 7-1 C
4-60 C 5-15 C 7-2 C
4-61 C 5-16 C 7-3 C
4-62 A 5-17 C 74 C
4-63 A 5-18 C 7-5 C
4-64 D 5-19 C 7-6 D
4-65 D 5-20 C 7-6.1/7-6.2 D
4-66 A 5-21 C 7-7 C
4-67 A 5-22 C 7-8 C
4-68 C. 5-23 C 7-9 C
4-69 C 5-24 C 7-10 C
4-70 C 5-25 C 7-11 C
4-71 C 5-26 C 7-12 C
4-72 D 5-27- C 7-13 C
4-73 C 5-28 C 7-14 C
4-74 A 5-29 C 7-15 C
4-75 C 5-30 C 7-16 C
4-76 C 5-31 C 7-17 C
4-77 B 5-32 C 7-18 C

iv 60493800 D

Page Revision Page Revision Page Revision

7-19 C 7-67 (D-5 C
7-20 C 7-68 (D-6 C
7-21 C 7-69 C D-7 (

7-22 C 7-70 C E·I (

7-23 D 7-71 C E-2 ('

7-24 D 7-72 C Index-I (

7-25 C 7-73 (Index-2 ('

7-7:6 C 7-74 C Index-3 C
7-27 D 7-75 C Index-4 C
7-28 D 7-76 C Index-S C
7-29 C 7-77 C Index-6 (

7-30 C 7-78 C Index· 7 ('

7-31 C 7-79 C Index.-S (

7-32 C 7-80 C Index-9 D
7-33 C A·I A (mt Sheet D
7-34 C A-2 A Inside Back
7-35 D A-3 A (over
7-36 C A-4 A Back ('over
7-37 D A-5 A
7-38 C B-1 C
7-39 C B-2 C
7-40 C B-3 C
7-41 C B-4 C
7-42 C B-5 C
7-43 C 8-6 C
7-44 C B-7 C
7-45 C B-8 B
7-46 C 8-9 C
7-47 C C-I C
7-48 C C-2 C
7-49 C C-3 C
7-50 C C-4 C
7-51 C C-S C
7-52 C C-6 A
7-53 C C-7 C
7-54 C (-8 C
7-55 C C-9 C
7-56 C C·IO C
7-57 C C-II C
7-58 C C-12 ('

7-59 C (-13 ('

7-60 (('-14 C
7-61 (C-15 ('

7-62 (C-16 ('

7-63 C D-l ('

7-64 (D-2 ('

7-65 C D-3 C
7-66 (D-4 ('

60493800 D iv-a/iv-b

PREFACE

This manual describes the NOS/BE Version 1 Operating System for the CONTROL DATA ® CYBER 170
Series, CYBER 70 Models 71, 72, 73, 74, and 6000 Series Computers. It was written for programmers who
use the source languages that operate under NOS/BE 1, and it includes information of specific interest to
those who write in COMPASS assembly language.

Extended memory for CDC CYBER 170 Models 171, 172, 173, 174, and 175 is called extended core storage I
(ECS). Extended memory for COC CYBER 170 Model 176 is analogous to the CYBER 70 Model 76 large
central memory (LCM) or large central memory extended (LCME). When ECS and LCM/LCME are function-
ally equivalent in this manual, the acronym ECS is used to refer to ECS and LCM/LCME. See appendix E
for differences between ECS and LCM/LCME.

Other CDC manuals containing information about NOS/BE I:

Control Data Publication Publication Number

NOS/BE 1 Operator's Guide 60493900

NOS/BE 1 Diagnostic Handbook 60494400

NOS/BE 1 Installation Handbook 60494300

NOS/BE System Programmer's Reference Manual 60494100

NOS/BE I Station Operator's Guide/Reference Manual 60494200

On-Line Maintenance Software Reference Manual 60453900

UPDATE Reference Manual 60449900

CYBER Loader Reference Manual 60429800

INTERCOM 4 Reference Manual 60494600

INTERCOM 4 MUJ Reference Manual 60494700

CYBER Common Utilities Reference Manual 60495600

CYBER Record Manager Reference Manual 60495700

This product is intended for use only as described in this document.
Control Data cannot be responsible for the proper functioning of
undescribed features or parameters.

60493800 D " v/vi

CONTENTS

1. INTRODUCTION 1-1 3. FILE CONCEPTS AND STRUCTURE 3-1

Hardware Function and Use 1-1 General File Usage 3-1
Mainframe and Console 1-2 Naming Files 3-1

Cen tral Memory 1-2 Reserved Logical File Names 3-1
Central Processor Unit 1-5 Special-Named Files 3-1
Peripheral Processor Units 1-6 Assigning Files to a Job 3-3
Status and Control Register 1-7 Disposing of Files and Equipment 3-4
Operator Console 1-7 File Structure 3-4

Rotating Mass Storage 1-7 System-Logical-Records and Physical
Unit Record Equipment 1-8 Record Units 3-5
Magnetic Tape Units 1-8 File Divisions 3-6
Extended Core Storage 1-9 Device Sets 3-7
Remote Terminals 1-10 Public Device Set Usage 3-8

Individual Products 1-10 Private Device Set Usage 3-9
INTERCOM 1-10 Private Device Set Example 3-10
CYBER Record Manager 1-11 Operating System Random Files 3-11
FORM 1-12 Name/Number Index Files 3-12
UPDATE 1-12 User-Defined Index Files 3-13
Common Utilities 1-13 Permanent Files 3-13
CYBER Loader 1-13 Concepts 3-14

File Identification 3-14
Permissions and Passwords 3-15

2. JOB PROCESSING AND DECK Multiple Access 3-15
STRUCTURE 2-1 Queued and Archived Files 3-16

Incomplete Cycles 3-17
Deck Structure 2~2 Usage 3-17

Separator Cards 2-3 Batch Job Usage 3-17
Control Statement Section 2-4 INTERCOM Usage 3-19

library Use 2-4 Accounting 3-21
Load Sequence 2-5 Examples 3-21
LGO and Program Execution Calls 2-6 CAT ALOG Examples 3-21
Compiler and Assembler Calls 2-7 ATTACH Examples 3-23

"- Efficient Control Statement RENAME Examples 3-24 I

Ordering 2-8 PURGE Examples 3-24
Directive_ Section 2-9 ALTER/EXTEND Example 3-25

\ Detailed Job Flow Through System 2-9 Extended Core Storage Files 3-25
Example Job 2-9 ECS Buffered Files 3-25
Examples of Job Deck Arrangements 2-10 ECS Resident Files 3-26

) Job Termination Details 2-14 Magnetic Tape Files 3-27
Abnormal Termination 2-14 Noise Brackets (657 and 659 Tape
Operator Command Termination 2-15 Drives) 3-28

~ Job Dayftle 2-15
v'

Tape Marks 3-28

'\

60493800 C vii

Data Format 3-28 DUMPF (Dump Permanent File to Tape) 4-32
SI Tapes 3-29 EDITLIB (Construct User Library) 4-35
Sand L Tapes 3-30 EDITLIB Control Statement Format 4-35

7-Track vs. 9-Track Tapes 3-31 EDITLIB Directive Format 4-36
7-Track Tape 3-31 Manipulation of Library Files . 4-39
9-Track Tape 3-31 ADD (Add Program During

Tape Labels 3-32 Library Creation) 4-39
Standard Labeled Tape Structure 3-36 CONTENT (List File) 4-41

Labeled Multi-File Sets 3-37 DELETE (Delete Program From
Usage Summary 3-38 Library) 4-41

Print Files 3-40 END RUN (Stop Execution) 4-41
FINISH (Stop File Manipulation) 4-42
LIBRARY (Delimit Library) 4-42

4. JOB CONTROL STATEMENTS 4-1 LISTLIB (List Library File) 4-42
RANTOSEQ (Convert Random File

Control Statement Syntax 4-1 to Sequential File) 4-42
Job Statement 4-2 REPLACE (Delete and Replace
ABS (Absolute Central Memory Dump) 4-4 Program) 4-43
ACCOUNT (Accounting Information) 4-5 REWIND (Rewind File) 4-43
ADDSET (Add Device to Device Set) 4-5 SEQTORAN (Convert Sequential
ALTER (Change Permanent File Length) 4-6 File to Random File) 4-43
ATTACH (Attach Permanent File to Job) 4-7 SETAL (Change Access Level) 4-44
AUDIT (Permanent File Summary) 4-8 SETFL (Change Field Length) 4-44
BKSP (Backspace System-Logical-Record) 4-10 SETFLO (Set Field Length Override
CATALOG (Create Permanent File) 4-10 Bit) 4-44
CKP (Checkpoint Request) 4-12 SKIPB (Skip Backward) 4-45
COMBINE (R~cord Consolidation) 4-13 SKIPF (Skip Forward) 4-45
COMMENT (Add Comment to Dayfile) 4-13 User EDITLIB Examples 4-46
COMPARE (Compare Files) 4-14 EXECUTE (Initiate Execution) 4-47
COpy (Copy to End-of-Information) 4-15 EXIT (Process After Fatal Error) 4-47
COPYBCD (Copy Line Image File) 4-16 EXTEND (Permanent File Extension) 4-49
COPYBF and COPYCF (Copy Binary and GETPF (Attach Permanent File From Linked

Coded Files) 4-16 Mainframe) 4-50
COPYBR and COPYCR (Copy Binary and LABEL (Tape Label Specification) 4-50

Coded Records) 4-19 LABELMS (Device Set Labeling) 4-53
COPYN (Consolidate File) 4-20 LIMIT (Limit Mass Storage) 4-55

COPYN Directive Statements 4-21 LISTMF (List Labeled Tape) 4-56
REWIND (Rewind File) 4-21 LOAD (Load Program) 4-56
SKIPF (Skip File) 4-22 LOADPF (Load Permanent File to Tape) 4-57
SKIPR (Skip Record) 4-22 LOADPF Examples 4-58
WEOF (Write File Mark) 4-22 MAP (Produce Load Map) 4-59
Record Identification Statement 4-22 MODE (Suspend Error Exit) 4-60

File Positioning for COPYN 4-24 MOUNT (Associate Device Set) 4-61
COPYSBF (Copy Shifted Binary File) 4-25 PAUSE (Operator Interface) 4-61
COPYXS (Copy X Tape to SI Tape) 4-25 PURGE (Remove Permanent File) 4-62
DELSET (Delete Member) 4-26 RECOVER (Device Set Maintenance) 4-62
DISPOSE (Release File) 4-27 REDUCE (Reduce Field Length) 4-63
DMP (Dump Central Memory) 4-29 RENAME (Change Permanent File Table) 4-63

Exchange Package Dump 4-29 REQUEST (Assign File to Device) 4-64
Control Point Area Dump 4-30 Tape File Request 4-65
Relative Dump 4-30 Unit Record Device Request 4-70
Absolute Dump 4-31 ECS File Request 4-70

DMPECS (Dump Extended Core Storage) 4-31 Mass Storage File Request 4-71
DSMOUNT (Disassociate Device) 4-32

viii 60493800 D

\
I

RESTART (Restart Job From Checkpoint
Tape) 4-72

RETURN (Evict File) 4-73
REWIND (Rewind File) 4-74
RFL (Request Field Length) 4-74
ROUTE (File Disposition) . 4-75
SA VEPF (Catalog Permanent File· on linked

Mainframe) 4-83
SETNAME (Establish Implicit Setname) 4-84
SKIPB (Skip Backward System-Logical-

Records) 4-84
SKIPF (Skip Forward System-Logical-

Records) 4-85
SUMMARY (Account Summary) 4-86
SWITCH (Set Software Switch) 4-86
SYSBULL (Access System Bulletin) 4-86
TRANSF (Decrement Dependency Count) 4-87
TRANSPF (Transfer Permanent File) 4-89

Single Device Set TRANSPF 4-90
Transferring From a Member 4-90
Transferring From a Master 4-90

Dual Device Set TRANSPF 4-91
UNWAD (Evict File) 4-92
VSN (Tape Volume Identification) 4-92

5. CYBER CONTROL LANGUAGE (CCL) 5-1

Introduction 5-1
Expressions 5-2

Operators 5-3
Arithmetic 5-3
Relational 5-4
Logical 54
Order of Evaluation 54

Integer Constants 5-5·

Symbolic Names 5-5
Conditional Statements 5-8

IFE 5-9
SKIP 5-10
ELSE 5-10
ENDIF 5-11

Iterative Statements 5-11
Additional CCL Statements 5-12

DISPLAY 5-12
SET 5-13

Functions 5-14
FILE 5-15
DT 5-16
NUM 5-17

Procedures 5-18
Procedure Residence 5-19

60493800 C

Procedure Structure 5-19
Procedure Header Statement 5-19
Procedure Body 5-21

Procedure Call and Return 5-22
Procedure Call 5-23
Procedure Return 5-28

Procedure Commands 5-30
.DATA 5-30
.EOR 5-32
.EOF 5-32

* 5-32
Sample Jobs 5-33

6. COMMUNICATION AREAS 6-1

File Environment Table 6-1
FET Creaiion Macros 6-1
FET Field Description 6-5
Circular Buffer Use 6-20

Establishing Owncode Routines 6-22
Tape Label Processing 6-23

Standard Label Processing 6-23
Label Macro for FET Fields 6-24
Extended Label Processing 6-25

7. COMPASS INTERFACE WITH
OPERATING SYSTEM 7-1

User/System Communication 7-1
Basic Communication: RA+l Requests 7-1
Recall Concept 7-2
Using CPC 7-3

Calling Sequence to CPC 7-3
CPC Execution 74

Locations RA Through RA + 1 00 7-6
CYBER Record Manager Macros 7-8
System Communication Macros 7-10

SYSCOM Macro 7 -10
SYSTEM Macro 7 -11

Common Uses of System Macro 7 -11
Register Save/Restore Function 7 -12
Integer Divide opdefs 7 -13

System Action Macros 7 -13
Ending Programs 7 -13

ABORT Macro 7 -13
ENDRUN Macro 7-14
GETMC Macro 7-15

Field Length Request 7 -16
: Dayfile Messages 7 -17

RECALL Macro 7 -18
Status Information 7-18

ix •

I
)

\

Time and Date Macros 7-18 Write and Rewrite Functions 7-51
STATUS Macro 7-20 WRITE Macro 7-52
FILESTAT Macro 7-21 WRITER Macro 7-53
FILEINFO Macro 7-22 WRITEF Macro 7-54
GETJCI Macro 7-24 WPHR Macro 7-54
SETJCI Macro 7-25 WRITEN Macro 7-55

Dependent Job Count 7-27 WRITOUT Macro 7-56
Reading Control Cards 7-27 REWRITE Macros 7-58
Program Recovery 7-28 WRITIN Macro 7-60

RECOVR Macro 7-28 Positioning Functions 7-61
Calling RPV Directly 7-30 SKIPF Macro 7-62

CHECKPT Macro 7-31 SKIPB Macro 7-62
File Action Macros 7-33 BKSP Macro 7-63

REQUEST Macro 7-33 BKSPRU Macro 7-64
Open and Close Functions 7-38 REWIND Macro 7-64

OPEN Macro 7-38 UNLOAD Macro 7-65
POSMF Macro 7-39 File Disposition 7-65
CWSE Macro 7-40 EVICT Macro 7-65
CWSER Macro 7-42 DISPOSE Macro 7-66

Read Functions 7-44 ROUTE Macro 7-67
READ Macro 7-45 Permanent File Functions 7-72
READNS Macro 7-46 FDB Macro 7-72
READSKP Macro 7-47 Function Macros 7-75
RPHR Macro 7-48 PERM Macro 7-76
READN Macro 7-48 System Texts 7-76
,READIN Macro 7-49 Common Decks 7-77

Text Overlays 7-78

APPENDIXES'

A Standard Character Set A-I C Control Statement Summary C-I
B Glossary B-1 D Punch Card and Tape Format)),1

E CYBER 170 Model 176 Differences E-I

INDEX

fiGURES

1-1 Central Memory Allocation 1-3 5·2 Calling a Procedure from Another '
2-1 Sample COMPASS Job 2-10 Procedure 5-22
2-2 Job Flow at Central Site 2-12 6-1 File Environment Table 6-2
2-3 Sample Dayfile 2-16 7·1 Communication Area RA through
5-1 Calling a Procedure from a Job 5·22 RA+l00 7-7

TABLES

3-1 Permanent File Parameters 3-18 4·1 Items 'Listed by Audit . 4-9
3-2 ANSI Standard Tape Label Formats 3-34 4-2 COPYxx Format Conversion 4-18
3-3 Carriage Control Characters 3-43 5-1 Symbolic Names with Arithmetic Values 5-6

• x 60493800 C

INTRODUCTION

The Network Operating System/Batch Environment, NOS/BE 1, is the operating system for the CYBER 170,
CYBER 70 Models 71, 72, 73, 74, and 6000 Series Computer Systems. It is the basic system software that
coordinates all other system software, user programs, and hardware action.

The NOS/BE 1 operating system offers a standard set of functions that can be utilized by system programs
written in the COMPASS assembly language and by user jobs. It also supports software packages known as
the NOS/BE 1 Product Set. The product set includes compilers common to more than one Control Data
operating system and products that are unique to the NOS/BE 1 operating system. All products run under
the control of the operating system.

NOS/BE 1 is a multiprogramming, multiprocessing operating system. Many jobs can be in the system in

1

various states of processing. It is not necessary for one job to complete before another job begins execution.
Among the tasks the operating system performs for a job are: reading the job into the system, assigning it
,system resources such as central memory and mass storage files, scheduling execution in the central processor,
and performing end-of-job procedures that dispose of fIles used or produced by the job. The operating system
also controls the environment of the software and hardware used by a job, such that the resources available to
all jobs are used efficiently.

The remainder of this section presents background material about the hardware of the CYBER 170, CYBER 70
Models 71, 72, 73, 74, ~~d 6000 Series Computer Systems. Product set members that are intimately involved
with the operating system, but fully described in other manuals, are also summarized.

HARDWARE FUNCTION AND USE

The CYBER 170, CYBER 70 Models 71, 72, 73, 74, and 6000 Series Computer Systems have these hardware
components:

Mainframe of the computer formed by one or two central processors, central memory, and peripheral
processors

Operator console through which the operator oversees software and hardware operation

Peripheral devices including (at miniinum) rotating mass storage devices, line printer, card punch, card
reader, and magnetic tape units.

Additiol1ai hardware that can be part of the system includes:

Extended core storage

Graphics terminals and plotters

Different types of line printers and magnetic tape units

60493800 B 1-1

All of the hardware mentioned above usually resides at a central site. However, the CYBER hardware and
NOS/BE 1 operating system also can have remote sites connected to the central site through several kinds of
communication lines. .

More than one central site can be linked together. In particular, a site with 6000 Series Computer Systems
can be linked to another 6000 site or to a 7600 site so that users in one location can receive the benefits
available through more than one system.

The following discussion introduces the main components of the CYBER 170, CYBER 70 Models 71, 72,
73, 74, and 6000 Series Computer Systems and shows how they are used during system operation.

MAINFRAME AND CONSOLE

The mainframe consists of central memory, central processor, and peripheral processors operated through a
display console.

CENTRAL MEMORY

Central memory consists of 60-bit words. Memory holds instructions to be executed by the central processor,
data to be manipulated by the central processor, and data buffered to and from peripheral processors. Any
given system can have memory with 49K, 65K, 98K, or 131 K words. Memory sizes of 198K or 262K are
available with the CYBER 170 Series.

A CYBER 170 has a central memory control that controls the flow of data between central memory and the
requesting. system. components.

Two portions of central memory known as low core and high core are reserved for system use. Low core, the
beginning address of central memory, contains central memory resident (CMR) and a small library of system
routines frequently used by peripheral processors or the central processor during operating system functions.
These library programs exist in memory because they can be loaded from CMR much faster than from the
rotating mass storage device on which the rest of tpe system routines reside, and thereby reduce system over­
head. CMR also contains system tables and pointer words, the communication area that links peripheral
processors and central memory, and control point areas. High core, the highest numbered addresses in memory,
contains information relating to allocation of space on rotating mass storage devices. The amount of memory
assigned to low core and high core varies during operation, with space not currently required being released, so
that a maximum amount of memory is available for user jobs.

NOS/BE 1 is a multiprogramming system. This means that more than one job can be in central memory at the
same time. Although only one of the jobs can be using the central processor in a single-processor system at
a given time, all other jobs in memory can· have peripheral. processors executing tasks for them during that
time.

Figure 1-1 shows central memory allocation to the system and user jobs. As shown, the first address is at the
extreme low end of central memory and the last address is at the extreme upper end.

1-2 60493800 B

Last
Address

First
Address

~,.

CONTROL POINT DEFINITION

High Core

Unused Storage

Job at Control Point 17

Job at Control Point 16

Job at Control Point 15

Unused Storage

Job at Control Point 4

Unused Storage

Job at Control Point 3

Job at Control Point 2

Unused Storage

Job at Control Point 1

Low Core

Figure 1-1. Central Memory Allocation

}

"!~

(Used for mass storage
file reference infor­
mation)

(Used for Central Mem­
ory Resident portion of
operating system, includ­
ing control point areas)

Each job in central memory is assigned a control point number. Control points are the concept by which
memory, the central processor and system resources are assigned to a job in memory. Any job in memory
has a control point number to identify it and has a 200-word control point area in CMR in which the
system stores information about the job. The exchange package for the control point is also stored in the
control point area.

The physical portion of central memory allocated to a job is related to the control point number to which
the job is assigned. This assignment is made and maintained in numerical order. Thus, the job at control
point 2 follows the job at control point 1, and the job at control point 3 follows the job at control point 2,
as shown in figure 1-1.

60493800 A 1-3

Through a dynamic relocation process, jobs are moved up and down in memory to make room for new jobs
assigned to control points. The relocation process occurs continuously as memory requirements change. For
example, jobs might be running at all control points except control point 2 when a new job is assigned to
control point 2. If sufficient contiguous memory is not available for the new job, other jobs are relocated as
necessary to provide sufficient contiguous memory. Each job is moved as a block. It might be necessary to
relocate the jobs at both control points 1 and 3, or to relocate only one of them, since unassigned memory
can exist between control points.

When a job is moved in storage, MTR suspends all user program activity at the control point, waits for all
PPUs assigned to the control point to clear their field access flags, and then starts the system routine that
moves the job. When the move is complete, the reference address of the job is modified and job activity re­
sumes. The job itself is not affected by this change in location. Since all program locations are relative to
the beginning of the job field length, only the RA address in system tables needs to be changed when the job
is moved.

Up to 15 control points, numbered 1 through 17 octal, are available for user jobs. An installation can choose
fewer than 15. Control point 0 is used to identify all hardware and software resources notpresentiy allocated
to user jobs, or to identify resources known only to the o~erating system.

At a typical installation, one of the 15 control points is assigned to JANUS, the operating system routine that
.controls the line printer, card punch, and card reader. JANUS uses central memory buffers, but the actual
driving of equipment is performed by peripheral processor, not central processor, programs.

An installation with remote terminals uses INTERCOM to communicate with those terminals. INTERCOM
does not use any central processor code to control this communication but executes entirely within the
peripheral processors. The central memory required for buffers and control tables is obtained by extending
the CMR area. A control point is used only when a task requested from a terminal requires the use of the
central processor.

A control point and a job are associated only when the job is in memory or when it has been rolled out.
When a job is swapped out, it loses its control point identification.

FIELD LENGTH DEFINITION

Every job in central memory occupies a contiguous block of words. The block is not of fixed size, but rather
varies with the needs of the job. The length of the block is the field length (FL) of the job. FL-l is the
relative address of the last word in the block. The· first word in the block is known as the reference address
(RA); all addresses within each block are relative to RA.

A job can reference locations within its field length, but not outside its field length. Any attempt to read or
write outside a job field length is prevented by the hardware,so that all other jobs and system programs in
central memory are protected from being accidentally overwritten. For this reason, each job can consider that
it is running alone in a computer with a central memory the size of its field length.

The operating system dynamically manages the field length assigned to a job, so that memory is not needlessly
tied to a control point when it is not required. Field length increases or decreases as the job progresses. A
job step such as a file copy operation, for example, requires much less memory than a step such as a program
compilation. The operating system adjusts the field length to the job step needs.

1-4 60493800 A

A job normally does not stay in central memory until completion, but moves into and out of memory in
relation to its needs for system resources, such as tapes or the central processor itself, and to the needs of
other jobs in the system. The scheduler routine of the operating system is responsible for moving jobs into
memory to maximize system throughput.

JOB SWAPPING AND ROLLING

When a job with a high priority enters the system, existing jobs of lower priority might be swapped out or
rolled out of central memory. The user can specify initial job priority within certain ranges, but the operating
system -adjusts this priority according to factors such as the system resources requested or allocated and the
time consumed in waiting for resources. Some functions requested through remote terminals and those that
affect overall system efficiency are assigned high priority. Actions by the central site operator also can affect
the priority of any given job.

When a job- is swapped out, all information reflecting the current status of the job is written to a mass storage
file. The field length and control point associated with the job are made available to the Scheduler. As control
points and central memory become available, swapped out jobs are swapped back in to continue processing. A
job can be swapped into any free control point; thus, a job might run at several different control points before
it reaches termination.

When a job is rolled out, its job field length is written to a rollout file before the field length is freed for
another job. The control point is not released when rollout occurs. If extended core storage (ECS) or
magnetic tape is being used by a job, that job can be rolled out, but not swapped out.

If a job is waiting for a permanent file to become available or for a mass storage device to be mounted, the
job can be swapped out automatically. When the permanent file or device becomes available, the job becomes
eligible to be swapped in.

Swapping or rolling might increase the total time that a job spends in the computer, but it has no effect on the
amount of central processor time used by a given job; and it should help overall processing. Job swapping
and job rollout are controlled by the Scheduler. The most important system effect is to maintain high central
processor utilization. Frequent short central processor access is balanced with longer, less urgent, access.

CENTRAL PROCESSOR UNIT

The central processor unit (CPU) is an extremely high-speed arithmetic processor that executes the instructions
of system or user programs. It performs computational tasks, but must use central memory for all its input and
output including communication with the operating system.

Depending on the specific hardware model, a system might have one of two types of central processors or
might have both types of processors in a single system. The differences in the processors has to do with the
number of functional units available for concurrent operations, and hence the relative speed at which a given
set of instructions can execute.

The CYBER 170 Models 171, 172, arid 173, CYBER 70 Models 71·1x, 72·1x, and 73-1x, and the 6200 and
6400 computer systems each have a single processor that has a unified arithmetic unit in which instructions
must be executed serially.

60493800 D 1-5

The CYBER 170 Model 174, CYBER 70 Models 71-2x, 72-2x, and 73-2x, and the 6500 computer systems each
have two central processing units. Both CPUs have unified arithmetic units; thus, two control points can be
executing simultaneously on these models.

The CYBER 170 Model 175 and 176, CYBER 70 Model 74-1x, and the 6600 computer systems have a
single processor composed of 9 or 10 arithemtic and logical units in which separate instructions from a
single program can be executing simultaneously. Careful arrangement of instructions within a program
can be done to take advantage of this concurrent execution capability. (See appendix E for a more
detailed discussion of CYBER 170 Model 176 differences.)

The CYBER 70 Model 74-2x and the 6700 computer systems have one processor of each type. When only one
control point is to use the CPU, it is given the advantages of the IO-unit parallel processor. When a second
control point is ready to execute, it obtains the unified processor, thus not disturbing the first job. During
normal execution, a program will usually be allotted some time on each of the two CPUs.

The central processor contains three sets of registers: the 60-bit X registers that hold data and instructions,
the 18-bit A registers that hold addresses, and the 18-bit B registers used as index registers and temporary
storage. The COMPASS assembly language deals with register manipulation.

Only jobs existing in memory are eligible for assignment to the central processor. The job using the central
processor might relinquish its control by executing an exchange jump instruction when it must await com­
pletion of a task such as a read from a file. The operating system interrupts the job periodically and gives
the central processor to another job in memory so that many jobs can be in some state of execution.

When a jo.b loses the central processor, a 16-word exchange package is stored in the control point area for
that job. This package contains information used directly in exchange jumps: the most recent contents of
all central processor registers, the RA and FL in central memory and in ECS, and the program address which
is the address of the next instruction to be executed.

The exchange package is not under user control. The job is made aware of the package when a job terminates
abnormally, however. Experienced programmers often can use exchange package information while debugging
programs 'that abort during execution. The package is printed as part of the standard output. from an aborted
job. It can also be requested by a job.

PERIPHERAL PROCESSOR UNITS

Peripheral processor units (PPUs) are small computers with 4096 12-bit words of memory. Any given
system might have seven to 20 peripheral processors. PPUs are independent computers; they all can
simultaneously process programs. In addition, a CYBER Model 176 can have up to six first-level
peripheral processors (FLPPs) that are used to transfer data to mass storage.

One of the purposes of the PPUs is to perform input and output of data requested by a program executing in
the central processor. All data transferred between central memory and any input, output, or storage device
passes through a PPU. Peripheral processors also perform the bulk of the tasks required by the operating
system, including such tasks as formatting entries in system tables and driving output devices, so that the
central processor is available for user jobs.

One peripheral processor holds only the monitor routine, MTR, which oversees and controls all operating system
functions. (Part of the monitor also resides in central memory and is known as CPMTR.) Another peripheral
processor is devoted t.,xclusively to routine DSD which drives the system display console and input keyboard.
This routine interprets and processes all requests typed by the operator and displays all messages from the

1-6 60493800 C

operating system routines. Coordination between the central processor and a peripheral processor, or between
peripheral processors, is achieved by the MTR routine. Peripheral processor programs are normally the con­
cern only of system analysts.

STATUS AND CONTROL REGISTER

The CYBER 170 computer systems contain a special 204 bit register which is accessible only from a peripheral
processor program. The user program is not aware of the existence of this hardware feature in that it does
not affect normal execution of programs. The primary purpose of a status and control register is to record
the occurrence of abnormal hardware execution or environmental conditions which might affect hardware per­
formance. Parity errors are recorded, as well, to compile a history of operation malfunction valuable to an
analyst in determining the origin of a particular problem.

The status and control register also contains bits that can be used to control various optional modes of
operation.

OPE RATOR CONSOLE

The operator console consists of a keyboard and one or two cathode ray tube display screens. Commands
entered through the keyboard are interpreted and processed by the operating system. The displays present a
wide variety of information to the operator, ranging from lists of jobs in the systems through hardware status,
the control statement any job is currently executing, and the contents of memory for a particular job.

Operator action is required for some jobs, such as mounting requested magnetic tapes. The operating system
contains many features that minimize the need for operator commands through the keyboard. Automatic tape
assignment, for example, allows the operator to mount a tape and have the system determine which job is
using it, rather than having the operator tell the system which job the tape is for. Most jobs can proceed
without operator action, but the operator always has the ability to change the automatic functioning of the
system.

Normally, a user job does not communicate directly with the operator, although the capability is available
through control statements in the job and in some programs.

ROTATING MASS STORAGE

Rotating mass storage is a disk pack used to store operating system files and routines, user jobs, and user files.
Permanent files, which are files protected against accidental destruction and unauthorized use, must reside on
rotating mass storage.

Rotating mass storage is a random device, as opposed to magnetic tape which is a sequential device. On a
random device, information that is logically part of the same file might be physically scattered throughout the
storage areas of the device. The operating system is responsible for maintaining the logical order of a file.

No phYSical distinction exists between binary and coded information on rotating mass storage. Data from an
integral number of central memory words is transferred between a buffer in memory and the device with no
change. A file declared to be binary when it was written can be read as a coded file, and vice versa. Rotating
mass storage is the only device in which this is possible.

60493800·A 1-7

Storage space on rotating mass storage devices is assigned to a file as it is required by the file. When a job
creates a file, it does not request a particular size of file; no pre allocation occurs. Files on mass storage grow
as they are written and can overflow to another physical device.

All rotating mass storage devices belong to a logical grouping known as a device set. The installation configures
these sets to its own needs.

Public device sets hold system ftles and user files from any job.

Private device sets hold only files that a job specifically indicates should be on a private device set.

The user job selects the device set on which ftles are to reside by specifying a specific setname or by default.

UNIT RECORD EQUIPMENT

Unit record equipment is of two categories:

Standard unit record equipment is the line printer, card punch, and card reader necessary for the
operation of all systems.

Other unit record equipment can include graphics consoles, plotters, and paper tape readers and
punches. These are not a· part of the basic system. The operating system dermes codes pertaining
to mes on these devices: but does not include the programs needed to operate the equipment. Non­
standard unit record equipment runs under control of software provided by an installation.

Standard unit record equipment runs under control of the part of the operating system known as JANUS. All
files to be processed by JANUS must be in a special format in which each card or line is terminated by a
word with 12-bits of zero in bit positions 0-11.

The card readers can accept, and the card punches produce, files punched with either of two different sets of
Hollerith punched codes. Binary punched cards can also be processed in two formats.

Various line printers are available. Models with removable print trains offer character sets with uppercase and
lowercase English, fonts with other languages, etc. Fewer unique characters on the train generally increase
print speeds. Depending on the code sent to the controller and the controller translation of that code, a
character that is producted on one printer can appear as a different character on another printer. For
example, a quotation mark output on one printer might well appear as a ::/= on another. This often occurs
when the character desired is not present on the printer to be used for output.

When an installation has different types of unit record equipment, the job is responsible for providing informa­
tion in the format required for processing on a particular device.

MAGNETIC TAPE UNITS

The NOS/BE 1 operating system supports both 7-track and 9-track magnetic tape units. When an installation
has both types of units available, the job is responsible for specifying the type of hardware unit required to
process a given tape. The system default is a 7-track tape. Both binary and coded information can be
written.

1-8 60493800 A

For a binary tape, bit patterns are 'written, to the tape as they appear in memory.

For coded tape, 6-bit characters in memory are translated to a different 6"';bit pattern, known as external
BCD, before they are written to the tape.

Density for a 7-track tape can be 200, 556, or 800 bits per inch.

9-track tape corresponds to tapes in industry-standard format. Both binary and coded information can be
written, but the information is not the same as 7-track binary or coded information.

For a 9-track binary tape, bits are packed, with three 8-bit characters on tape corresponding to four
6-bit characters in memory.

For 9-track coded tape, bits are either packed or are in 8-bit character codes; the two possible codes
are the 64-character ASCII and the 128-character EBCDIC characters.

Density for a 9-track tape can be 800 characters per inch (cpi), 1600 cpi phase-encoded, or 6250 cpi group-encoded. I
Another type of control over recording of tape information deals with the number of characters that appear
between the physical blocks on the tape and how fIles and records are recorded. On both 7-track and
9-track tapes, one of three formats must be selected: SI, S, or L; each offers advantages depending on the
use made of the tape.

EXTENDED CORE STORAGE

Extended Core Storage is a second, supplementary form of memory that has two main uses. It is used as a
mass storage device or as an auxiliary direct access memory. Its large amount of storage and very fast transfer
rates make it suitable for many tasks.

CYBER 170 Model 176 systems have a form of extended memory different than other CYBER 170 models I
but functionally similar. The CYBER 170 Model 176 extended memory cannot be shared with other systems
and does not have a distributive data path (DDP) capability. Other minor differences are in appendix E of .
this manual. References to ECS in the remainder of this document apply to extended memory of all CYBER
170 Models except as limited by the CYBER 170 Model 176 differences described in appendix E.

The use of ECS at any particular site depends on the options selected when the system is installed. Frequently
used operating system routines can be placed on the ECS library ftle, rather than in the central memory low
core library area, to reduce the size of low core used by the system without using rotating mass storage. In
a multi-mainframe environment, ECS might be used to link the two computer systems.

ECS can be used for buffering sequential ftles on public devices or for storing sequential or random fIles (ECS
resident fIles). Each job specifies whether or not a given file will be buffered through ECS or reside on ECS.
In this respect, ECS is the same as other mass storage devices except that ECS resident fIles may not overflow
to other mass storage devices.

ECS can be accessed directly from a running program; in this case, a block of ECS is assigned to the user's
control point. The block is delimited by RE (reference address for ECS) and FE (field length for ECS) fields
in the exchange package. These fields are analogous to the RA and FL fields for central memory. In this
mode, ECS is accessed by the ECS direct read/write hardware instructions which perform very high-speed block
transfers of user specified length between the ECS and central memory field length addresses specified by the
user. The main use of ECS in the direct access capacity is to hold large arrays and tables that do not fit in
central memory and would otherwise require partitioning and partial residence on disk; or to otherwise reduce
central memory requirements by moving the arrays and tables to ECS as their main residence.

60493800 C 1-9

REMOTE TERMINALS

Remote terminals are physically linked to the central site by communication lines. Logically, they are under
control of the portion of the operating system known as INTERCOM. INTERCOM allows a user at a remote
site to access the central site facilities. INTERCOM is controlled by the central site operator and might not
be available to remote terminals all the time the central site is in operation.

Remote terminals are of many different types and complexities. General categories of remote terminals are:

Teletype terminals, which might be a physical Teletype or a display terminal.

Display terminals, which include a keyboard and a display screen, and possibly a character printer.

Remote batch terminals, which have a card reader, line printer, and possibly a card punch attached.
Some remote batch terminals have a display screen.

All of the remote terminals provide interactive access to the operating system control statements. That is,
control statements can be entered and executed one at a time without being submitted as a complete job.
The remote batch terminals allow complete jobs to be entered through the card reader and printed output
to be received. Users at remote terminals without a card reader can submit jobs constructed with INTERCOM
features or permanent files stored at the central site.

Different terminals operate in different character set modes. Some terminals can be reinitialized to accom­
modate either ASCII or BCD data; others run only in one mode at all times. Frequently, the line printers
of a remote terminal operate in a different mode than those at the central site.

A job can be submitted at one site and specify that its output is to be returned to another site. All job
output can be sent to any remote terminal, although it is usually not practical to send lengthy print files
to terminals without line printers. Files can be routed between remote sites and the central site in either
direction. Each terminal has an identifier assigned when communications are established between the terminal
and the central site. This identifier is used to specify the location to receive fIles.

INDIVIDUAL PRODUCTS

In addition to the capabilities described later in this manual, the operating system includes several features'
which in turn provide many user options. Several of these features and product set members that are
referred to by name in this manual are introduced below.

INTERCOM

INTERCOM interfaces remote terminals with the central site computer. The central site operator must initiate
INTERCOM as a program before remote access is possible.

Hardware connected to the remote terminals is controlled through drivers within INTERCOM. Any particular
terminal might interface through the L, C, or LCC mode of operation. If the mode required for a terminal
has not been initiated by the central site operator, that terminal cannot be used even though other terminals
are in operation.

1-10 60493800 A

Commands entered at the terminal keyboard call for a variety of INTERCOM capabilities. The first command
at many terminals is LOGIN, which establishes the user's authority to use INTERCOM; other terminals do not
require LOGIN.

INTERCOM has three distinct capabilities. All three are available from remote batch terminals; only the first
two are available from terminals without batch capabilities.

The interactive capabilities of INTERCOM encompass two types of commands. INTERCOM commands allow the
terminal user to receive status about files associated with that terminal, display contents of mes, and send messages.
Any keyboard entry that is not an INTERCOM command is assumed to be an operating system control statement.
Consequently, control statements that can be submitted as part of a job, except for magnetic type requests, can be
executed one at a time through INTERCOM with a few minor exceptions.

The file creating and editing capabilities of INTERCOM are the primary features of EDITOR. When the terminal user
calls EDITOR through a terminal keyboard command, subsequent keyboard entries can become part of a me being
created or updated. Interactive commands can also be submitted through EDITOR. When the created or updated file
is a source program, EDITOR allows the program to be compiled and executed through a single keyboard entry.
EDITOR displays the results on the display screen. When the file is a series of card images corresponding to a job
deck, another command causes the file to be entered into the input queue of jobs awaiting execution as though the job
had been entered as a card deck through a card reader.

The remote batch capabilities of INTERCOM give the remote terminal user commands for line printer and card reader
control. Jobs that originate through the remote batch terminals can be controlled to some extent through the terminal;
jobs that originate through interactive commands are beyond terminal user control until the job completes.

CYBER RECORD MANAGER

CYBER Record Manager is the software package that performs execution time input/output for many members
of the NOS/BE 1 product set. It is a common product described in full in the CYBER Record Manager
reference manual.

The NOS/BE 1 operating system recognizes CYBER Record Manager only asa central processor routine. The
operating system itself does not use CYBER Record Manager for any of its functions. Rather, all CYBER
Record Manager capabilities are implemented through the standard operating system functions described in the
later sections of this manual.

CYBER Record Manager defines five me organizations, eight record types, and four blocking types for
sequential files. None of these are known to the operating system in the same terminology or implementation,
although operating system actions and CYBER Record Manager functions often result in an identical sequential
file.

COBOL programmers access CYBER Record Manager through language statements. FORTRAN Extended pro­
grammers can access its capabilities through language statements or calls to CYBER Record Manager routines.
COMPASS programmers can use CYBER Record Manager macros instead of the macros described later in this
manual. Sort/Merge and FORM users can use CYBER Record Manager through the language in which these
utilities are called or through a FILE control statement available to all programs using CYBER Record Manager
for execution input/output.

60493800 C 1-11

FORM

FORM is a fIle transformation utility. It is a common product described in full in the FORM reference
manual.

FORM can reformat fIles or records. As a fIle reformatting utility it has two capabilities:

Reformat fIles defined to CYBER Record Manager as sequential, indexed sequential, direct, or actual key
organization. Files can be transformed into another of these organizations or into the same organization
with a different physical structure.

Reformat binary· tape files in System/360 format for use under NOS/BE 1.

As a record reformatting utility, FORM has the capability to add or delete characters from each record, blank
or zero fill records, convert bit patterns to representations of characters or numbers, and in general change
the contents of a specific record. FORM can select all records or only particular records for processing.

FORM is called by a control statement or a COMPASS, COBOL, or FORTRAN Extended statement that
specifies the general operations to be performed. Detailed instructions for FORM are submitted as directives
that are part of the job deck or are on a separate fIle for a control card call. Programs pass directives to
FORM through common blocks.

UPDATE

UPDATE is a utility program used for modifying files .of coded data. It allows a Hollerith punched card or
card image to be stored on rotating mass storage,while retaining the ability to modify file contents without
recreating the entire card fIle. UPDATE is a common product described in full in the UPDATE reference
manual.

Systems programmers make frequent use of UPDATE when they make local modifications to the operating
system or its products. UPDATE is not merely a systems capability, however. Any file of character data can
be processed by the utility, whether that file contains a single program being converted from one language
version to another, a group of subroutines, or a series of independent statements that a COpy sentence
incorporates into a COBOL source program.

A specially formatted file called a program library is created when UPDATE first manipulates a file. This
program library should not be confused with a library defined for LOADER purposes. UPDATE files,commonly
named OLDPL and NEWPL, are Hollerith card images with history information provided by UPDATE. Files
identified as user or system libraries must contain assembled binary programs in a format suitable for loading.
UPDATE program libraries must be manipulated only by UPDATE.

UPDATE is called by a control statement that specifies the general operations to be performed. Detailed
instructions for UPDATE are submitted· as directives that are part of the job deck or on a separate file.

More than 40 directives can be specified, giving the user a wide latitude in modifying the original program
library and otherwise manipulating files produced by UPDATE. Among UPDATE capabilities are:

Inserting or deleting cards

Dividing the file into decks for manipulation as a group

1-12 60493800 A

Declaring decks common so that a single copy can be used repeatedly Without duplication

Temporarily or permanently removing corrections previously made

Producing a new program library incorporating present corrections

Producing a compile file of active cards returned to a format acceptable to assembler or compiler input.

COMMON UTILITIES

The common utilities are file listing and updating utilities. Two utilities exist: ITEMIZE and COYPL
(see the CYBER Common Utilities Reference Manual).

ITEMIZE is a utility program used for listing information about the content of each record of a binary me.
It processes files with system-logical-records and produces printed output. Output specifies the type of
record, as determined from the prefix table or other information at the beginning of the file. Depending on
tlle type of record, other information such as entry point names in libraries, overlay level, library table fields,
or full text of records can be obtained. ITEMIZE is useful in determining the contents of user libraries, load
tapes, and deadstart tapes.

COPYL and its variation COPYLM replace binary records while copying one file to another. COPYL and
COPYLM differ only in their handling of multiple occurrences of a record on the file being copied. They
operate with binary or text records. These utilities are commonly used to maintain mes of procedures or
subroutines.

CYBER LOADER

CYBER Loader is the software package that places programs into memory so that they are ready for execution. Loader
input is obtained from local files and libraries. Upon completion ofloading, execution of the program is initiated if
requested.

Loading also involves performance of services such as generation of a load map, presetting of unused core storage to a
specified value, and generation of overlays or segments.

60493800 C 1-13

,

JOB PROCESSING AND DECK STRUCTURE 2

A job is a sequence of control statements followed by optional source programs, object programs, data, or
directives. A job begins with the job statement and ends with an end-of-information indicator. Jobs exist as
physical card decks or images of card decks.

Jobs can enter the system in several ways:

Batch jobs on cards are read in through card readers at the central site. Batch jobs of card images are read
from a load tape under the direction of the central site operator.

Remote batch jobs on cards are read in through card readers at remote sites. Remote batch jobs of card
images are transmitted from a file created at a remote terminal. All remote batch jobs interface with the
central site facilities through INTERCOM.

Interactive jobs are control statements submitted one at a time from a remote terminal keyboard under
INTERCOM control. These jobs execute as a series of batch jobs created by INTERCOM in response to
individual keyboard entries.

All batch jobs have the same characteristics no matter what their origin. Remote batch jobs differ from central
site batch jobs only in that output returns to the terminal and that remote jobs are subject to the limitations of
the physical equipment at the remote site. Although all remote sites might not have the capability to produce
line printer output, the file that normally would be printed is available on mass storage for display on the termi­
nal. The following information about job decks applies to both decks and deck images.

See the INTERCOM reference manual for specific details of output file handling and specific interface to the
operating system, as well as for interactive procedures.

All jobs in the system waiting to begin execution are collectively known as the input queue. Each job enters
the system with the name specified by the first five characters on the first card in the job deck. The operat­
ing system adds two unique characters to this name to distinguish it from all others in the system.

Once a job enters central memory and begins execution, the image of the job deck is known as a file by the name
of INPUT. During job execution, a file with the name OUTPUT is generated by the operating system. When
the job completes execution, the file OUTPUT becomes part of the output queue. The output queue is the
collective name for output files remaining in the system when the jobs that generated them have completed execu­
tion. All print and punch files,and special disposition files such as plot, are part of the output queue. As printers,
punches, or remote devices become ready, the operating system causes files from the output queue to be physi­
cally output. Files normally return to the user with the name of the job that created them.

Jobs do not read cards directly from the card reader; neither do they directly punch cards or print lines. All
job input and job output is stored on mass storage files and on job process images of card or printer files. Physi­
cal card reader, card punch, and line printer operations proceed under operating system, not user job, control.

60493800 A 2-1

DECK STRUCTURE

The first card of any deck is the job statement; the last card has a 6/7/8/9 multiple-punch in column 1. Cards
with a 7/8/9 mUltiple-punch in column 1 divide the deck into sections.t

Program, data, or
directives in the
order that control
statements execute

6
7
8
9

I
I
I
I -

/7
8
9

I
I
I
~

(

~ I

(
/7

8 (9

L
I (
I
II MYJOB --

1- End-of-Infor mation Card

I.
I- 7/8/9 Card

L_
I- 7/8/9 Card

I Control
Statements

Jo b Statement

J
-

I-

Control statements are instructions to the operating system or its loader. They are grouped together at the
beginning of a deck. Collectively, the control statements form a job stream. Individually, the control state­
ments are job ·steps.

Control statements execute in the order in which they appear in the job stream. Consequently, the order· of
the control statements governs the order of other sections in the deck.

The user is responsible for structuring the job deck such that there is a one-to-one correspondence between
each control statement that reads from the file INPUT and the sections of the job deck. The operating
system handles· each section of the job deck only ·once, unless the job specifies contrary handling. For example,

tWhen a job deck is being created as card images through INTERCOM, the *EOR and *EOF entries result in
the physical equivalent of 7/8/9 and 6/7/8/9, respectively.

2-2 60493800 A

consider two source programs to be compiled and executed with two different sets of data: when one pro­
gram is compiled and executed before the other is compiled and executed, the control statements and deck
structure must be:

DECKA.

COBOL.

LGO.

REWIND,LGO.

COBOL.

LGO.

7/8/9
first source program

7/8/9

data for first source program execution

7/8/9
second source program

7/8/9
data for second source program execution

61718/9

Compile first source program and write binary file LGO
Execute binary file

Compile second source program and write binary file LGO
Execute binary file

On the other hand, if both programs were compiled before either was executed, the corresponding deck structure
would be:

DECKB.

COBOL.

COBOL,B=ABC.

LGO.

ABC.

7/8/9
first source program

7/8/9
second source program

7/8/9

data for first source program execution

7/8/9

data for second source program execution

Compile first source program and write binary file LGO
Compile second source program and write binary file ABC
Execute binary file LGO
Execute binary file ABC

The two cdecks above illustr.ate the principles of all deck structuring.

SEPARATORCAROS

One job is separated from another job by a card with a 6/7 i8/9 multiple-punch in column 1. This card is known
as an end-of-information card.

Within a single job deck, each section is separated by a card with a 7/8/9 multiple-punch in column 1. Once
on mass storage, these cards are represented by system~logical-record terminators of level 0, as discussed with
rotating mass storage files in section 3. A compiler or assembler encountering a 7/8/9 card image during
processing treats the card as a partition or file end.

60493&00 A 2-3

An octal level numb ex 0 through. 17 can be punched in columns 2 and 3 of a separator card. . A level. number of
only one digit can be punched in column 2. When columns 2 and 3 are blank, a level number of 0 is assumed.
Level numbers are not normally used on separator cal:ds.

Interpretation of a 7/8/9 level 17 card depends on whether the ST parameter on the job statement indicates the
job might be run on a system under control of the SCOPE 2 operating system. JANUS, the system routine that
controls standard unit record equipment, converts a 7/8/9 level 17 card to the equivalent of a 6/7/8/9 end-of­
information card when the job cannot execute under SCOPE 2. No such equivalencing occurs for job decks that
might execute under control of both NOS/BE 1 and SCOPE 2. A 7/8/9 level 17 card should not be used in
place of a 6/7/8/9 card when the job might execute under the SCOPE 2 operating system.

Separator cards can be used to indicate whether the cards following them are punched in 026 or 029 character
codes, as discussed in appendix A.

CONTROL STATEMENT SECTION

The first section of a job deck contains only control statements. Each control statement results in the execution
of a program in the central processor or in a peripheral processor. Many control statements call programs that
make entries in system tables; others call programs that perform utility functions such as file copy. Several
broad categories of control statements are:

Operatillg system functions such as assigning a tape unit to the job or routing a print file to a remote
terminal. These functions are fully described in section 4 of this manual.

Utility functions such as file copy or creation of user libraries. These functions are also described in
section 4 of this manual.

Loader functions such as load, but not execution of a program, and satisfying program references from
different libraries. Only the simplest LOAD and EXECUTE statements are summarized in this manual; the
LOADER reference manual has complete details of all loader functions.

Program call functions which are a request to the operating system to load and execute information existing
on a file attached to the job. This function is discussed below.

Each of the control statements discussed in this manual is available to the job because the control statement name
is the entry point to a program on a system library named NUCLEUS.

LIBRARY USE

A library is a collection of programs in executable form accompanied by library tables that specify the content of
the library. The operating system uses the libraries as the source of programs with entry point names specified on
control statements.

Two types of libraries exist: system libraries and user libraries.

2-4

A system library is available automatically to all jobs. It is named in the Library Name Table in central
memory resident (CMR). It is contained on a permanent file that can be read by more than one job at a
time, and parts of it can be contained in CMR.

60493800 A

A user library is a file formatted as a library, but it is not available to a job until it has been
explicitly brought to the job. The job might create the fIle before using it as a library, or it might
be a permanent file that a job would attach explicitly. A permanent file might be such that more
than one job could read it at once; but every job must explicitly declare the job. The EDITLIB
utility can be used to create a user library.

The particular libraries that are used for each job, or for each loading operation within a job, depend on the
library set defined by the job. The total library set consists of the global library set, the local library set, and the
system library NUCLEUS.

NUCLEUS is a system library that cannot be removed from the library set. It contains the items listed
under the heading System Texts in section 5.

The local library set is defined by the loader control statement LDSET(LIB= . . .). Local library sets are
valid only for the current load operation. At the start of each load operation, the local library set is defmed
as empty unless the LIB parameter of LDSET is specified (see the CYBER Loader Reference Manual). I
The global library set is defined by the loader control statement LIBRARY. Global library sets are valid
throughout the job or until another LIBRARY control statement changes the global library . At the start of
each job, the global library set is defined as empty.

The loader uses the library set in the following order:

Local libraries

Global libraries

NUCLEUS.

Any program name on a control statement is loaded first if a me with that name is attached to the job. Then
the library set is searched and a program loaded for any matching entry point. In a simple job, the local library
set and global library set are. both empty, so that the NUCLEUS library is the source of control statements exe­
cuted. Given the library set search order, however, any user program with the same name as a system program is
executed when the proper library set is declared in the job.

See the LOADER reference manual for further details of library use during loading.

LOAD SEQUENCE

A load sequence is a consecutive series of control statements that begins with a call that causes a program to be
loaded into central memory. A load sequence ends with a call that initiates execution. The following is a load
sequence with three control statements:

lOAO(ABC)

lOAO(OEF)

EXECUTE.

60493800 C 2-5

All control statements in a load sequence must contain only instructions for the loader. Both LOAD and
EXECUTE are loader statements. . The other control statements that appear in this manual are not loader state­
ments, unless they are specifically identified as such.

Any control statement that calls for execution terminates a load sequence. Any name call such as LGO, ABC,
REQUEST(...), terminates a load sequence. In most instances, a control statement initiates and terminates a
single statement load sequence.

Other statements that are part of a load sequence, or that affect the loading of programs are:

LOAD Loads modules from file specified.

LIBLOAD Loads modules specified by entry point names from the library named.

SLOAD Loads specified modules from the file named.

EXECUTE Completes load and executes.

NOGO Completes load and produces a core image on specified or default fIle.

SATISFY Specifies name of a library to be searched for unsatisfied externals.

LDSET Specifies a list of independent options that can preset central memory field length, alter
default rewind options, control load map generation, define the libraries in the local library
set, select loading error handling, and force loading or inhibit loading of routines.

See the LOADER reference manual for a full description of these control statements.

LGO AND PROGRAM EXECUTION CALLS

All assembler and compiler calls allow the user to specify the name of the file to contain executable code. In the
absence of another name, a file with the logical file name LGO is created. A job does not necessarily have a file
with the name LGO.

When LGO is ,encountered in the job stream, the operating system searches for a file with that name. In the
default instance, such a file exists and it is loaded and executed. LGO contains the relocatable object code
produced by the compilers in the absence of a source program statement that directs absolute code. (See the
LOADER reference manual for absolute code information.)

Similarly, any file name presented among the control statements is assumed to contain a program that can be
loaded and executed. For example,

FTN,8=OLlVER.

OLIVER.

Writes object code on file OLIVER
Calls for load and execution of OLIVER

Parameters can appear on the program call, depending on the object program itself. The FORTRAN Extended
compiler, for instance, produces object code that can process file names. The following program call substitutes
files T APE2 and T APE3 for whatever file names are compiled into the object code:

OLlVER,TAPE2,TAPE3.

2-6 60493800 A

The COBOL compiler, on the other hand, does not produce object code that can accept parameters on the pro­
gram call. The reference manuals for the individual products describe any such capability.

Any user program that can access the first 100 octal locations of the job field length can be written to accept
program call parameters. Positioning of the file named on a program call is controlled by installation default.
At most installations, rewind occurs automatically before loading. In a straightforward compile-and-execute job,
the file LGO or its eqUivalent need not be rewound.

When more than one program is written on LGO, however, manipulation of LGO might be required. If the first
program is a main program and the second is a subroutine called by the main program, a single call for LGO
rewinds the file, loads both programs, and executes.

If the two programs are independent, however, execution stops at the end of the first object program. A second
call to LGO rewinds the file, such that the first program executes a second time, rather than having the second
program execute. The previous example job DECKA shows a deck structure with one file name that executes
two independent programs with a control statement to rewind this file so that the second program overwrites the
first. An alternative is example DECKB in which the second independent program is written to a separate file and
executed by a call with the name of the file ABC.

COMPILER AND ASSEMBLER CALLS

Names that should be used on the program execution call statement to assemble or compile a user program are
listed below:

Source Language lfn Source Language Ifn

FORTRAN Extended FTN. SYMPL SYMPL.

COBOL Version 4 COBOL. Sort/Merge SORTMRG.

COBOL Version S CaBaLS. PERT/TIME PERT66.

ALGOL ALGOL. APT APT.

ALGOL Editor ALGEDIT. QUERY UPDATE Version 2 Q2.

COMPASS COMPASS. QUERY UPDATE Version 3 QU.

SIMSCRIPT SIMS. FORM FORM.

BASIC BASIC. Data Definition Language DDL.

Parameters on the control statements are used for such functions as:

Naming the file containing the program to be assembled or compiled (default name INPUT)

Naming the file to which the program is to be translated in object code (default name LGO)

Producing source language or object code listings of the program (listing options such as S in FORTRAN)

Parameters for many products are the default I=INPUT, B=LGO, and L=OUTPUT. See the reference manual for
a particular compiler for a full description of parameters that can appear on the control statement. When a com­
piler or assembler call specifies INPUT as the name of the file containing the source program, the next unexecuted
section of the job deck must contain the program.

60493800 C 2-7

EFFICIENT CONTROL STATEMENT ORDERING

Placement of some control statements, partiCularly those that cause hardware devices to be assigned to a job, can
affect the efficiency with which all jobs execute. Parameters on those statements can also affect job throughput.

A REQUEST control statement for a magnetic tape assigns a tape drive unit to thejob as soon as the tape is
made ready and the operating system is aware of the tape location. The tape unit remains assigned to the job
either until the job executes a control statement that releases the unit or the job terminates.

The examples below presume a job compiles a FORTRAN Extended program and executes the program twice
using different sets of data on individual tape volumes.

An inefficient ordering of control statements is:

INEFFICIENT,MT2

REQUEST,OATA,MT. ASSIGN 3456.

REQUEST,OATA2,MT. ASSIGN 3457.

FTN.

LGO.

LGO.

Job statement indicates 2 tape units required

The same operations performed more efficiently are:

EFFICIENT,MT1.

FTN.

REQUEST,OATA,MT,VSN=3456,NORING.

LGO.

UNLOAO,OATA.

REQUEST,OATA2,MT,VSN=3457,NORING.

LGO.

RETURN,OATA2.

The second job is more efficient in several ways:

Only the number of tapes required at one time is indicated on the job statement, not the total required in
all. Jobs with tape requirements are captured in a tape queue when they enter the system; they are not
released to the input queue, and consequently cannot begin execution, until certain tape availability require­
ments are met.

A tape is requested when it is required, not before. Since the compiler does not use the data tape, the
tape is not requested until after compilation is complete.

The VSN parameter on the REQUEST control statement permits the operating system to assign the mounted
tape to the job without operator command. Without VSN information, the operator must inform the oper­
ating system of the location of the tape.

The tape unit is returned to the system when it is no longer needed, instead of having the job hold the unit
until job termination.

In general, control statement placement can affect job execution time whenever a magnetic tape or private device
set is used.

2-8 60493800 A

DIRECTIVE SECTION

Directives are defined as control information that does not appear within the control statement section of
a job deck. They are required by several of the utilities, including EDITLIB and COPYN, and by several
common products such as UPDATE and FORM.

When directives specify instructions which will not fit on a single control statement, the programmer has
the option of:

Placing directives on a file and making the file available to the job before the directives are needed; or

Placing the directives within the job deck.

The name of the file containing the directives must be specified in the call to the utility or product. The
default file name for most calls in INPUT.

When directives are part of a job deck, they must appear in a separate section. The deck must be struc­
tured such that the directives are the next unprocessed section of the deck at the time the utility or
product executes.

DETAILED JOB FLOW THROUGH SYSTEM

The following information describes the system procedures that occur as a job passes through the system.
An understanding of this information is not required for system use.

From the time a job is assigned to a control point and execution is completed, many other jobs are being
executed. Each job is assigned a job descriptor table (JDT) ordinal when it is first assigned to a control
point. If the scheduler routine swaps out the job (returns it to mass storage in its present state of execu­
tion), the JDT ordinal maintains the identity of the job when the control point association is lost. A job can
be swapped out by the scheduler when a job with higher priority enters the system or when the job is
delayed waiting for a resource such as a disk pack. A job can be rolled out also, freeing central memory
but retaining a control point, while awaiting operator action. The scheduler directs swapping and rolling,
taking into consideration the relative needs of batch jobs and interactive jobs. When jobs are swapped or
rolled into central memory, they resume execution at the point of interruption.

EXAMPLE JOB

The manner in which control statements establish user program handling is illustrated by following a sample
job as it is processed. For example, consider a job to assemble and execute a program written in COM­
PASS, with the output to a line printer. The user gives the operator a tape to be used for output. In
the sample job shown below, the tape has a label containing 1972 as the volume serial number.

60493800 A 2-9

The job would be structured as follows:

16
Terminates data --+ 7

8 and job deck
9 I

I

--f
17

8
Terminates 9
source program ~ I

I
I

Lf
7 I 8
9 jLGO.

Terminates
control
statements

-....
/ REQUEST,TAPE1,MT,E,RING.

/COMPASS.

-I VSN(TAPE1=1972)

JOBNAME,MT1 "

I--

~

-

Figure 2-1. Sample COMPASS Job

"""-

!
I-

Data

I-
I-

~ ,
t
t Control t stateme

t
I

nts

COMPASS
Program

When the sample job is input through the card reader, the operating system calls a PP routine to translate the job
statement, check the validity of its entries, and assign a priority to the job. Next the PP copies the job through
a central memory input/output buffer onto mass storage. At this point, the operating system identifies the job
by its ftle name JOBNAOI (from the job statement).

EXAMPLES OF JOB DECK ARRANGEMENTS

The order in which control statements are arranged depends upon the purpose of the job and the programs it
contains. The following examples illustrate typical arrangements. Automatic rewind before a load is assumed.

1. JOBA,MTI.
REQUEST,SALLY,MT,VSN=123456.
SALLY.
6/7/8/9

JOBA requests a tape ftle named SALLY, and loads and executes an object program from that ftle.

2-10 60493800 A

2. JOBB.
FTN.
LGO.
7/8/9

FORTRAN Extended Program
6/7/8/9

JOBB, containing a FORTRAN Extended program on Hollerith cards, compiles, loads and executes that program.

3. JOBC, T50.
INPUT.
7/8/9
Program on Binary Cards
6/7/8/9

JOBe, containing a program on binary cards, loads and executes that program.

4. JOBD.
FTN.
LGO.
LGO.
7/8/9

FORTRAN Extended Program
7/8/9

First Data record
7/8/9

Second Data record
6/7/8/9

JOBD compiles and executes a FORTRAN Extended program and executes this program with one set of data,
and then with another.

5. JOBE.

ATTACH, MYLlB, ID=MINE.

COBOL.

REWIND, LGO.

EDITLlB, USER.

7/8/9
COBOL program

7/8/9
LlBRARY(MYLlB, OLD)

ADD(NEWPROG, LGO, AL=1)

FINISH.

61718/9

JOBE compiles a program and adds it to a user library named MYLIB. Directives required by the EDITLIB
utility during library manipulation are the last section of the deck.

60493800 A 2-11

2-12

2
3
4

CONTROL STATEMENT BUFFER

CONTROL
POINT
AREA

6

CENTRAL MEMORY

Job read into card reader
Job read through buffer onto disk
Job in mass storage input queue
Job assigned control point; goes into execution

5
6
7

7

Some output to a tape
Job assigned to output queue
Output to printer through
buffer to printer

Figure 2-2. Job Flow at Central Site

60493800 A

When the job is in the input queue of jobs awaiting execution, it comes under control of a NOS/BE 1 sched­
uling routine. The following factors are considered in assigning jobs to available control points: the priority
entered with the job, available system resources such as central memory, direct access ECS, tape units, and the total I
time the job has been in the system. Ajob descriptor table ordinal is assigned to the job; this ordinal is used to identify
the job while it is in execution regardless of whether it is in central memory or not.

The job then waits for the scheduler to assign it to a control point. When a control point becomes available,
the scheduler assigns the job and initializes the control point with pertinent information about the job. NOS/BE 1
saves the assigned job name for later use.

The job me name is changed to INPUT and the me is positioned at the statement following the first 7/8/9
card (the beginning of the user's program). The first control statements are read into a buffer within the
related control point area in low core, and are ready for execution. As job output is created, it is written to
a file named OUTPUT.

Accounting ')rocessing, if selected by the installation, occurs as the first step of actu31 job execution. Account­
ing information extracted from the job statement or the statement following. it is validated and saved for later
use by the system. The accounting information defined by the system can include such items as name, account
number, project number, etc. If accounting is not selected by the installation, as in this example, accounting
information need not be present.

After accounting processing, the system copies the BATCH system bulletin to the job's OUTPUT file. If the
installation has not specified BATCH system bulletin information, no information is written to the OUTPUT
file. The installation can specify other standard procedures to be executed at this time.

Upon completion of all standard procedures, job control is advanced to the second statement, COMPASS,
which directs assembly of the user's program. NOS/BE 1 requests the loader to load the COMPASS assembler
into the field length. Control passes to COMPASS to assemble the next cards on the file INPUT and put the
object program on the file LGO. The assembler stops when it reads a 7/8/9 card. (For assembly or compila­
tion, the user can designate mes other than INPUT as an input me and other than LGO as binary output by
entries on the COMPASS control statement; but unless such alternative files are named on the assembly or
compilation card - the COMPASS statement in this case - INPUT and LGO are used by default.) COMPASS
also writes a source language listing of the program onto a file named OUTPUT. At job termination OUTPUT
is printed unless the user specifies otherwise.

Control is then advanced to the next REQUEST statement. The VSN parameter·· provides the volume serial
number for the tape label. NOS/BE 1 automatically assigns the tape if it is mounted. (If the installation
does not choose the automatic assignment feature of NOS/BE 1, the REQUEST statement appears on the
operator console; and the operator must assign the tape to the job manually.) Control proceeds to the next
control statement, LGO.

The LGO statement directs program execution. The loader loads the LGO file containing the user's program
in object code into central memory and writes a map of this program onto the file OUTPUT; library sub­
programs required are loaded also. Control passes to the user's program for execution, input data is read
from the next element of the INPUT file (user's data), and output is written on TAPEl and OUTPUT.

60493800 C 2-13

I

I

As each control statement is executed, it is copied onto the job and system dayfiles. Control statement processing.
stops when the first 7/8/9 card is encountered. NOS/BE I writes job accounting information and job statistics
on the dayfile and copies this file to OUTPUT, which then is detached from the control point. The name
OUTPUT is changed to JOBNAOI (the assigned job name) and TAPEI is released so that the tape unit can be
available for another job. INPUT and LGO are cleared and released from NOS/BE 1 control. All equipment
associated with the job is released from control point n and assigned to control point 0, where it can be requested
by other jobs. The control point area and field length in central memory are made available for other jobs.
When a printer is available, JOBNAOI, containing the assembly language program listing, load map, output, and
dayfile, is printed.

JOB TERMINATION DETAILS

When a job is processed without error, normal termination activity begins upon reaching the end of the control
statements or some form of EXIT control statement. First, execution time of the job is written onto the job
dayfile and on the system dayfile. Then, the job dayfile is rewound and copied onto the file OUTPUT. Next,
OUTPUT and any other files ori mass storage designated for output, such as PUNCH or PUNCHB, are rewound
and placed in the output queue. OUTPUT is designated for the printer, and PUNCH (Hollerith) and PUNCHB
(binary) for the card punch by disposition codes. These files names are then changed to the job name and
assigned to control point O.

The mes listed below are treated as special cases. Unless the user overrides the default disposition of such
fIles, they are designated for output at job termination and automatically assigned a specific disposition code.

OUTPUT PUNCH

PUNCHB

FILMPR

FILMPL

HARDPR

HARDPL

PLOT

P80C

Files on magnetic tape are rewound (unloaded if the programmer requested save status), and released from the
system. Permanent files are released from the job and returned to permanent file manager jUrisdiction, and
private device sets are dismounted. All remaining files in central memory and mass storage associated with the
job including INPUT, LGO, and the job dayfIle, are cleared and released. The job is released from the control
point area.

All hardware devices assigned to a job are assigned to control point 0, so they can be reassigned to other jobs.
At this point,only files in the output queue relating to the job remain. When an output device of the type
requested by the file's disposition code is free, the file is output through that device.

ABNORMAL TERMINATION

When a fatal error occurs, the operating system sets a flag indicating the error. If the error has been previously
identified in the current job step by a call to RECOVR, control is returned to the user program for processing.
Otherwise error processing continues.

A diagnostic message that reflects the reason for abnormal termination is written to the job dayfIle. t A standard
abnormal termination dump then occurs. The dump appears on the file OUTPUT with the heading DMPX; this
dump shows the contents of the exchange package for the job, the contents of central processor registers, and the
contents of words before and after the location at which the program stopped. See the DMP control statement
for a description of the dump output.

tWhen a file is designated for output (output, punch, and so forth), the system finishes the write operation in
progress at the time of termination.

2-14 60493800 C

~The operating system then clears the error flag and searches the control statements for an EXIT statement.
Depending on the parameter of EXIT and the type of error that occurred, processing might resume with the
first control statement after the EXIT statement. See the EXIT control statement for a description of the
different error conditions and EXIT parameters. If no EXIT statement exists, the job terminates as described
above for normal job termination.

OPERATOR COMMAND TERMINATION

When the operator types in a DROP command, the job terminates prematurely. End-of-job procedures are
initiated as described under abnormal termination.

When the operator types in a KILL command, the job terminates prematurely. All mes associated with the
job, including the OUTPUT me, are dropped regardless of name or disposition. Permanent mes are treated
the same as for normal termination. The programmer does not receive a dayfile listi~g.

When the operator enters a RERUN command, the job is terminated and its INPUT file is returned to the
input queue, so that it can be run later. The OUTPUT file is dropped, and a new output file is created. The
job dayfile is copied to the new output file called a pre-output file, and becomes the OUTPUT file when the
job is run again. The OUTPUT file for the rerun job will contain the dayfile from the previous partial run
of the job and the output and dayfile from the complete run of the job.

Permanent mes and mounted private device sets for a rerun job are treated as for normal termination. All
other mes, regardless of name or disposition, are dropped.

In some cases, a job might perform a function which would make it impossible to restore conditions to their
initial state before the job was run. For example, if a job writes on an existing permanent ftle, that informa­
tion cannot be erased. When such a job is rerun, results are unpredictable. To avoid this condition, the sys­
tem will set a no-rerun flag in the control point area to reject a RERUN type-in by the operator. The no­
rerun flag will be set when the job has performed a catalog, purge, alter, rewrite, rename, or extend of a
permanent me; modified a permanent file; added or deleted a member of a device set.

Should a job be caught at a control point during a deadstart recovery, it is either dropped or rerun
depending upon the no-rerun flag. If possible, the job is rerun; however, if the flag indicates no rerun, the
job will· be dropped and an appropriate message added to its dayfile. Any job swapped out during a
deadstart recovery will be given a message indicating that recovery was performed.

JOB DA YF'ILE

The last item of the me OUTPUT from any job is the job dayme. It gives a history of job execution. Any
program or job that terminates abnormally produces dayme messages identifying a fatal error. Normal job com­
pletion is indicated by the absence of fatal error messages.

Each control statement that is called to execution is listed in the dayfile. System response to a control state-·
ment might follow. The dayftle shows, for example, the VSN of a scratch tape assigned; such information might
be needed as input in another job using that tape. The NOS/BE 1 Diagnostic Handbook gives the meaning of
status and error messages originating in the operating system. Messages that originate from a member of the
product set are explained in the individual product reference manual.

60493800 A 2-15

I

I

The programmer can cause information to be sent to the job dayftle by usi,ng the COMMENT control statement
or the MESSAGE macro in a COMPASS program. Several other language processors also allow messages to be
sent to the operator or to the dayfile.

Figure 2-3 shows a typical dayftle.

HfS NOS/BE 1_
16.42.1Q.8ASIC60 FROM

sys level rnrn/dd/yy

16.42.20.IP 00000192 NORDS - FILE INPUl , DC 00
16.42.20.8ASIC31,T40.P2,HT1.

'1.'6."42. 26.REOUESTICOHPllE, .Q)

16.42.27.REQUEST(OlDPL,E,HY,VSN=4174,NORING)
16.43.50.(MT30 ASSIGNED.
16.".36.UPDATECQ.D,8,·==)
16.~4.38.MT30 VOLUME SERIAL NUMBER IS 004174
1~.~S.S8~· UPDATE COMPLETE.
16.45.5q.ROUTE(COHPILE~OC=IN)
'16.45 • 5 ~ • U N LeAD (OL D Pl)
16.46.06.0P 88801920 MOROS - FILE OU1PUT
16.46.07.H5 3584 WORDS C 358~ MAX
16.46.07.CPA 2.171 SEC. 2.171
16.46.01.CPB 1.164 sec. 1.164
16.46.07.10 14.1~3 SEC. 14.143
16.46.07.CH 285.807 KWS. 17.~~4
16.46.07.5S 3~.923

, DC itO
USED)
ADJ.
ADJ.
ADJ.
ADJ.

16.~6.U1.PP 34.835 SEC. DATE rnrn/dd/yy
16.~6.07.EJ END OF JDB, ••

Figure 2-3. Sample Dayftle

The system header identifies the system on which the job executed. Installations might change the information
shown. In the example above:

MFS Mainframe identifier

NOS/BE 1 Operating system level

10/15/75 Date the operating system was built; time and type of deadstart recovery appears if
recovery has occurred.

The first line after the system header gives the name of the job as modified by the operating system to make the
name unique among all jobs, and the job's origin in the following format:

jjjjjjj from s s sit t

jjjjjjj Jobname

s s s Source. Mainframe ID

t t Terminal ID

2-16 60493800 C

The lines giving statistics about the input and output mes have the following format:

IP nnnnnnnn WORDS - FILE xxxxxxx, DC yy
or

OP nnnnnnnn WORDS - FILE XXXXXXX, DC yy

IP Indicates that this message refers to an input me

OP Indicates that this message refers to an output me

nnnnnnnn Decimal number of words in the me

xxxxxxx Logical ftIe name

yy Disposition code of an output me. DC 40 is for print on any printer. See the DISPOSE
macro for a list of disposition codes.

Accounting messages are added to the dayftle at the end of the job and each time a SUMMARY control state­
ment executes. They have the following format:

MS aaaaaaaa WORDS {bbbbbbbb MAX WORDS USED}
CPAccccccc.ccc SEC. dddddddd.ddd ADJ.
CPBccccccc.ccc SEC. dddddddd.ddd ADJ.
IOeeeeeeee.eee SEC. fffffffr.fff ADJ.
CM99999999· ;99 KWS.. hhhhhhhh. hhh' AD J.
£(iiiiiiii.iii K~S. jjjjjjjj.jjj ADJ~
SS kkkkkkk~.kkk ADJ.
PPmmmQmmmm.mmm SEC. DATE MM/DD/YV

All values are in decimal, with 'leading zeros omitted:

aaaaaaaa

bbbbbbbb

cccccccc.ccc

dddddddd .ddd

eeeeeeee.eee

ffffffff.fff

60493800 A

Mass storage currently used by the job, not including the INPUT ftIe nor any
permanent files the job attaches. Newly created permanent files are included in
the word count. This message is issued only if the job has executed a LIMIT
control statement or if the installation has established a mass storage limit.
The decimal value in words is computed by multiplying the number of record
blocks used by the number of words in a record block.

Maximum mass storage used by the job. Otherwise, the same as aaaaaaaa.

Central processor-time; dual processors are reported separately.

Adjusted central processor time for each processor. The time is multiplied by
an installation selected weighting constant.

Input/output time.

Adjusted input/output time. The time is mUlttplied by an installation selected
weighting constant.

2-17

gggggggg.ggg

hhhhhhhh.hhh

iiiiiiii .iii

jjjjjjjj .jjj

kkkkkkkk.kkk

mmmmmmmm.mmm

Central memory kilo-word seconds. This value indicates central processor usage,
and is a sum of terms, each term computed as follows.

Central processor time and 10 time are weighted, to compensate for overlapped
10 processing, and then added together. This sum is multiplied by central
memory field length divjded by 1000 octal.

Each time central memory field length changes, a new term is computed. Thus,
the nwnber of terms summed is the same as the number of times central
memory field length changes during job execution.

Adjusted central memory kilo-word seconds .. Statistic is the same as control
memory kilo-word seconds with weighting factors selected by the installation.

Extended core storage kilo .. word seconds. This value is computed in the same
way central memory kilo-word seconds are computed, except ECS field length
divided by 1000 octal is used.

ECS kilo-word seconds adjusted by installation selected· weighting factors.

System seconds. The sum of the adjusted values of central processor time, 10
time, . central memory kilo-word seconds, and ECS kilo.,.word seconds.

Peripheral processor time.

60493800 A

FILE CONCEPTS AND STRUCTURE

A file is defined as a set of information that begins at beginning-of-information, ends at end-of-information,
and has a logical file name.

3

This section summarizes job responsibilities for mes and the devices on which they reside and introduces the
control statements used to process different types of meso Structure of mes within the system is also defined.

GENERAL FILE USAGE

A job is responsible for:

Specifying the logical file name by which a file is known during the job;

Assigning the file to a particular device, if necessary;

Disposing of the file if it is to be preserved when the job ends.

NAMING FILES

Each me associated with a job is known by its logical file name. The operating system associates two flIes with
each job; one with the logical flIe name INPUT and another with the logical file name OUTPUT. All other logical
flIe names must be specified by the job. The logical flIe name is valid only for the duration of the job. The name
is not part of the me itself; it is not written in the label of a me on tape, and it is not a part of the permanent
me table information.

Each logical file name must be unique within a job and must not duplicate the name of a multi-file tape set
associated with the job. Logical me names are one through seven letters or digits and must begin with a
letter.

RESERVED LOGICAL FILE NAMES

Logical me names that begin with ZZZZZ are reserved for use by the system. User jobs are not prevented
from creating or reading fIles with the name ZZZZZxx, but use of these files might adversely affect the job.

SPECIAL-NAMED FI LES

Special-named files are those with an inherent set of characteristics and disposition. The operating system
assumes the following characteristics for those mes named below:

60493800 A 3-1

INPUT

INPUT is the name of the file with the images of the job deck. Each separator card in the deck, or its
logical equivalent, is an end-of-partition when processed by system routines in the operating system or the
standard compilers. The separator cards trigger end-of-me processing. Each card image is a separate record
to compiler and assembler programs.

OUTPUT

Every job has a file of the name OUTPUT associated with it. OUTPUT is created by the operating system
on a queue device. The operating system writes the job dayfile to this file when the job terminates. Other
information that might appear on OUTPUT as a result of processing by system routines is:

Source program listing produced by compiler

Object listings requested by compiler call in the job

Diagnostics or error messages produced during compilation

Results generated during program execution

Exchange package dump generated by the operating system when a program aborts during execution,

OUTPUT always is printed or otherwise associated with a remote terminal when a job ends. The job can
rewind OUTPUT and overwrite existing data, or it can evict all data with a DISPOSE control statement, but
it cannot prevent the job dayme from being printed at batch job termination.

OUTPUT is a print file with a maximum line length of 137 characters. The first character is the carriage
control character which must be supplied by any user program that writes to OUTPUT. System routines
supply the carriage control as needed., The remaining 136 characters of the line can be printed. Some
system routines have the ability to format OUTPUT for Teletype device processing with a line length less
than 136 characters.

Any file copied to OUTPUT is printed at the end of the job. If the file does not have carriage control
characters at the beginning of each line, the COPYSBF utility should be used to shift each line one character
to the right and insert a leading blank for single spacing control.,

PUNCH

PUNCH is a file with an associated disposition code. Any data written to the file is assumed to be display
code. The me is punched in Hollerith format at the end of the job.

PUNCHB

PUNCHB is a file of binary information. Any data written to it is assumed to be binary. The file is punched
in standard binary format at the end of the job. Any assembled or compiled program that is written on
PUNCHB is an object program that can be loaded and executed by specifying the name of the file on which
the program resides.

3-2 60493800 A

PSOC

P80C is a me of binary information. Any data written to it is assumed to be binary. The me is punched in
free-form binary format at the end of the job. They are used only in special circumstances.

OTHER SPECIAL-NAMED FILES

Files with names FILMPR, FILMPL, HARDPR, HARDPL, and PLOT also have an associated disposition. The
operating system defines codes for these files, but does not supply the routines needed to drive the associated
hardcopy or microfIlm devices. Only some installations have these devices.

ASSIGNING FILES TO A JOB

Before a file can be read or written, the operating system must be informed of the device on which the file
resides. If a file is not associated with a specific device before it is created, it is written on a public mass
storage device at the time an executing program calls for me open. The job does not need to inform the
system of the residence of fIles on mass storage unless the fIle has special characteristics.

Files that exist only for the duration of the job are known as scratch meso They are created as they are
needed and destroyed when the job terminates. The INPUT file for the job, temporary files written by the
compilers during compilation, and some user files are useful only for a short time. Scratch mes are created
on mass storage as the file is referenced. They need not be specifically requested.

The devices on which rotating mass storage files are written are divided into two classes: public device sets
and user device sets. The programmer determines the device on which a me resides by the use or absence
of the REQUEST control statement and the SETNAME control statement or parameter. Public and private
device sets are described later in this section.

Situations in which it is necessary to inform the operating system of the device on which a me is to be
created include those when:

A file is to be subsequently declared a permanent me. Permanent files must be referenced on a
REQUEST control statement with a *PF parameter.

A me is to be released to the output queue for print or punch processing. Unless the file name is
OUTPUT, PUNCH, PUNCHB, or P80C, a REQUEST control statement with a *Q parameter is required.

A me is on magnetic tape. All tape files require a REQUEST or LABEL control statement that de­
scribes the characteristics of the tape data format, label, and recording mode.

A me is to reside on a private device set. A MOUNT control statement is required to associate the
private device set with the job. Subsequently, each me that is to reside on the device set must be
referenced in a REQUEST control statement specifying the device set name.

60493800 A 3-3

Exis.ting fIles that must be specifIcally associated with the job include:

All tape files. Tape mes require a REQUEST or LABEL control statement.

Permanent files. Permanent mes are associated with a job through an ATTACH or GETPF control
statement.

Private device set meso Permanent mes are attached with an ATTACH control statement that names the
device set.

The me INPUT, and all other special-named mes described above, are assigned by the operating system to a
mass storage device designated for input and output queue files.

DISPOSING OF FILES AND EQUIPMENT

Whether the file is to be temporary or permanent, is controlled by the programmer. All mes created· on mass
storage are temporary files that disappear when the job terminates, unless the job includes steps to preserve
the file. A file can be preserved on mass storage or on external media by transferring it to printed pages,
punched cards, or magnetic tape.

Files are preserved in printed or punch card form when they are assigned a disposition code that results in
processing by the line printer or card punch. Disposition codes are covered under discussions of the DISPOSE
and ROUTE control statements and macros, and the preceding special-named file discourse.

Files are preserved on mass storage by cataloging them as permanent files. Permanent files are explained later
in this section.

Normally, all mes assigned to a job are retained by that job until termination. When the files reside on non­
allocatable devices such as magnetic tapes, both the file and the hardware device are unavailable to other
portions of the system for the duration of the entire job even though the me is in process for only a short
part of the job.

When DISPOSE, ROUTE, UNLOAD, or RETURN is used, files can be released before job termination, making
both the logical me name and the resident device available for other uses, within the circumstances noted

I below. Files named in UNLOAD or RETURN are unavailable for the remainder of the job. An OPEN macro
issued later in the job creates another me.

New fIles to be retained between jobs as permanent mes on mass storage must be cataloged as permanent files
before the job ends. Existing permanent files return to permanent file manager jurisdiction when they are
referenced in either an UNLOAD or RETURN control statement or macro. They are no longer available to
the job until referenced in a subsequent ATTACH.

FILE STRUCTURE

All files on rotating mass storage are implemented through software conventions known as system-logical-records
and physical record units. These conventions are also applicable to magnetic tape in SI format and card files,
although the physical representations of these files are not precisely the same as for mass storage files.

3-4 60493800 C

The following paragraphs describe the structure of files produced by the system. They define the terms used
throughout this manual; specifically:

System-logical-record (equivalent to SCOPE logical records)

Level terminators

Physical record units

Partitions

SYSTEM-LOGICAL-RECORDS AND PHYSICAL RECORD UNITS

A PRU (physical record unit) is the amount of information that can be accessed in a single read or write
operation for a given device. On rotating mass storage, a PRU is equivalent to the contents of 64 central
memory words.

One write operation from a higher level language program usually does not result in the creation of a single
PRU, however. Routines called by compiler programs block program data in a central memory buffer during
program execution, so that one record generated by the program can become part of a single PRU or a string
of PRUs containing records from write calls issued by a program.

System-logical-records are written as one or more PRUs, the last of which is a short PRU or a zero-length
PRU containing a record· terminating marker. The terms short PRU and zero-length PRU refer to the amount
of valid user data within the PRU, not to the physical size of the PRU.

A short PRU contains fewer than 64 words of user data followed by a system-supplied record terminator
at the end of user data.

A zero-length PRU contains a system-supplied record terminator, but does not contain any user data.

When user data does not fill the last PRU needed to write a system-logical-record, the record terminator is
appended to the data and the remaining space in the PRU is ignored. If the record terminator cannot be
accommodated in the last PRU with data, a zero-length PRU is created to hold the record terminator. A
zero-length PRU has only system information.

The record terminator for a system-logical-record contains a level number of 0 through 17 to indicate the
relation of that record to other records in the file. The lowest level is 0; it is associated with a single system­
logical-record. A higher level number defines a set of records that begins immediately after the last record of
that level and continues through all system-logical-records of a lower level number until the end of a record
with that level or a higher level number is encountered.

A level number of 17 establishes a partition boundary for the file. Level 17 always is recorded in a zero­
length PRU. Level 17 records are written in response to a COMPASS macro WRITEF and to compiler pro­
gram requests to close a file or to write an end-of-file. When a file has only one partition, the level 17
terminator marks the logical end of the file. However, a file can contain any number of partitions defined
by level 17 before the physical end of the file.

60493800 B 3-5

To summarize rotating mass storage file structure:

Physical Structure

One or more PRUs terminated by a short or
zero-length PRU of level 0 through 16

One or more PRUs terminated by a zero­
length PRU of level 17

End of mass storage allocated in system
RBT table.

Logical Interpretation

System-logical-record of level indicated. Sets
end-of-record bits in system tables.

Partition. Sets end-of-partition bits in system
tables. End-of-file exits occur.

End-of-information. Sets end-of-information
bits, if any, in system tables; otherwise sets
end-ofmpartition bits.

System-Iqgical-records with particular level numbers can be accessed through SKIPF, SKIPB, COPYBF, and
COPYCF control statements and through the COMPASS macros SKIPF, SKIPB, and READSKP.

A system-Iogical~record of level 16 has special meaning to the Checkpoint/Restart feature of the operating
system. Consequently, level 16 should not be specified in user programs that might be checkpointed.

Sequential files are written directly in system-logical-record format. Random files are implemented thro~gh a
higher-level structure imposed upon the system-logical-records. Two types of higher level structures are:

Name/number index random files using operating system routines described later in this section.

CYBER Record Manager files using the capabilities of the CYBER Record Manager. These are described
in the product: reference manual.

FI LE DIVISIONS

The physical representation of beginning-of-information and end-of-information depends on the storage device.

Device Beginning-of-Information

Card deck Start of first card in deck

Labeled magnetic tape file Start of data after labels

Unlabeled SI format tape Start of data

Unlabeled S or L format tape Load point

Mass storage file Start of data in system table

ECS Start of data in system table

3-6

End.;of-Informatiort

Card with 6/7/8/9 multiple-punched
in column 1

Start of EOF label

Start of EOF label

Undefined

End of data designated in system
table

End of data designated in system
table

60493800 B

The operating system recognizes these divisions within a file:

Partitions are divisions within a file. On a mass storage fIle or a tape in SI format, a partition is
synonymous with a system-logical-record of level 17. On an S or L tape, a partition is indicated by
a tape mark. All mes have at least one partition.

System-logical-records of level 0 through 16 are defined by the operating system on SI format magnetic
tape and rotating mass storage. These records are divisions of a partition.

Zero-byte terminated records are divisions within a system-logical-record or within a partition of an S or
L tape. These records are the representation of a single print line or single punch card processed by
the JANUS routine of the operating system.

Tapes in S or L format do not have system-logical-records. For some purposes such as copy of a' coded
record, the operating system recognizes each physical record recorded on the tape as a single record that
is logically equivalent to a system-logical-record.

The operating system recognizes only the divisions indicated above. Individual products that are supported by
the operating system have different definitions of the term record. For instance, CYBER Record Manager
defines eight types of records, only one of which (S type) is equivalent to a system-logical-record. CYBER
Record Manager uses a slightly different definition for some record types. From a program standpoint, a
record is usually associated with a single read or write request.

DEVICE SETS

All rotating mass storage devices attached to a system are grouped into device sets. One device in a set is
designated as the master; it holds all tables related to the set. Each device in the system belongs to one and
only one set. Two types of device sets exist:

A public device set is always available to all jobs. It is used by the system to hold system files,
permanent mes, and special-named files such as INPUT and OUTPUT.

Unless a job requests that a me be written to another device, mes are assigned to a public· scratch
device.

A private device set is available to a job only by specific request. Depending on the installation, private
device sets mayor may not be physically mounted at all times. Files to be preserved on private device
sets should be made permanent on that set. Private device sets can be used simultaneously by jobs that
have mounted the device set.

Device sets can have a varying number of members within the set. Some device sets might have only a single
device associated with them. The single device in such a set is both the master device for the set and the
only member of the set. The set is identified by the set name. The individual members of the set are
identified by a volume serial number.

A job need not know the volume serial numbers of members of device sets, however. Parameters on the
REQUEST control statement that assigns a me to a device allow a member to be identified explicitly by its
volume serial number or implicitly by its attributes.

60493800 A 3-7

Attributes are assigned when a device set is created. The attributes of most concern to applications pro­
grammers are:

Public permanent file default set. Permanent files reside on this public set unless another set is
requested.

Queue set. Files with the name INPUT, OUTPUT, or any other special name reside on this set.
Any file to be named in a ROUTE or DISPOSE control statement must reside on this set.

Permanent file device. A member of a public or private device set can hold permanent files when
the device has the permanent fIle attribute.

Queue device. A device on which queue fIles can reside if the device is a member of the queue set.

Master device. The master device of each private device set must be known before the set can be
accessed by a job.

A fIle on a rotating mass storage device can be of arbitrary length, and it can be segmented over more than
one device. The data is recorded in a logical sequence of record blocks which can be arbitrarily scattered
about the disk surface. The operating system maintains a central memory table for each file, called the
record block table (RBT), in which the sequence of allocated record blocks is defined. The end-of­
information position and end-of-volume position are also defined in the RBT.

PUBLIC DEVICE SET USAGE

Public device· sets are the default. Unless a private device set· is requested, mass storage files are on public
devices. All public device sets are available to a job at all times; the MOUNT and DSMOUNT control state­
ments applicable to private device sets are not needed for public device sets and will be ignored if enountered.

The REQUEST control statement assigns a file to a public device. Normally, a REQUEST is not needed
except for:

Files that subsequently will be cataloged as permanent fIles;

Files that have a disposition code for printing or punching;

Files that are to reside on a particular public device set or member.

The *PF parameter of REQUEST assigns the fIle to a permanent me device.

The *Q parameter of REQUEST assigns the fIle to a queue device. A fIle cannot be referenced by a ROUTE
control statement or DISPOSE control statement unless it resides on a queue device.

Files named INPUT, OUTPUT, PUNCH, PUNCHB, P80C or any other special-named mes always reside on
public devices by default. A REQUEST with a *Q parameter is not needed for special-named files.

3-8 60493900 A

PRIVATE DEVICE SET USAGE

A private device set is established by the following steps:

Each pack to be included in the set is blank-labeled with the LABELMS utility.

The master device is established by an ADDSET control statement that defines the name of the set, the
volume serial number of the master device, the maximum number of packs that can exist in the set, and
the maximum number of permanent fIles that can exist in· the set. The master device need not be a
permanent file device, but· at least one member device should be designated as a permanentftle device.

Members of the device set are added by additional AI)DSET control statements that specify the device
set name, the master device volume serial number and the volume senal number for the pack being
added. Additional members are not required; the master device can be the only pack in the device set.
All ADDSET control statements can define the permanent me attribute for the device being added.
The ·queue attribute can be defmed if the device is being added to the public queue set.

Since tables relating to all packs that are subsequently added to the set reside on the master device, the
master device must be available each time a pack is added to or deleted from the device set and must be
available each time any me is accessed from the set. The master device is also required when any of the
permanent file utilities (AUDIT, DUMPF, LOADPF, or TRANSPF) references .aprivatedevice set.

To access a me eXisting on the device set or to create a fIle on the device set, the job must perform the
following steps:

The master device must be associated with the job by a· MOUNT control statement. Since private device
sets can be used by many jobs at the same time, the device might already be physically available. If
not, the operator must make the· master device available.

Any permanent. fue to be attached must be identified as a fIle on that particular sd. The· SETNAME
control statement can establish the set name prior to the attach request, or the SN=setname parameter
can be used on the ATTACH control statement.

The REQUEST control statement assigns a file to a private device; in addition, all fIles to be created
on the device set must be associated with the device set by a REQUEST control statement. An
SN=setname parameter explicitly names the set; an SN parameter implicitly names . the set specified
in the last SETNAME control statement.

Once the job has processed the mes associated with the device, the device set should be disassociated from the
job by execution of a DSMOUNT control statement. Execution-of DSMOUNT might free a disk drive for
other packs before the job ends, and thereby increase overall system throughput. If the job omits DSMOUNT,
the system disassociates the device set from the job during end-of-job processing.

The REQUEST control statement is required to assign a fIle to a private device set., The BN=setname or SN
parameter establishes the name of the set; the VSN parameter can specify a particular member of the set.
The *PF parameter can be used to ensure that the file resides on a permanent fIle device.

The SETNAME control statement can be executed before any mes are requested. SETNAME can establish
the device set to which all subsequent ATTACH control statements are directed. This eliminates the need for
an SN=setname parameter on each individual ATTACH control statement. It also defines the set to which
REQUEST control statements with SN parameters are directed.

60493800 D 3-9

I

PRIVATE DEVICE SET EXAMPLE

1. HOKEY.
LADELMS,OT=AY. PLEASE USE PACK 844A
LABELMS. PLEASE USE PACK 844B
AOOSET(VSN=844A, MP=844A, SN=t"ORE, ::PF)
AOOSET(MP=844A,VSN=8448,SN=MORE,XPF)
6l7/S/9

This job creates a device set with two members.

2. SUDST ITUTE.
MOUNT(SN=MORE,VSN=S44A)
OELSET(MP=S44A,SN=MORE

S
VSN=S44B)

MOUNT(SN=OTHER,VSN=123.
AOOSET,VSN=8448,SN=OTHER,MP=123,~PF.
6/7/S/9

This job deletes a pack from one device set and adds it to another.

3. FIX UP.

4.

5.

3-10

PAUSE. OPERATOR PLEASE ENSURE SN=MORE. VSN=844A IS ON AN RMS DRIVE.
RECOVER,SN=MORE,VSN=844A.
617/8/9

This job runs a RECOVER on device set MORE, assuming the master device is physically on a disk drive.

SET.
MOUNT(VSN=844A,SN=MQRE)
REQUEST(TAPE$, ::PF, SN=MORE)
FTN.
LGO.
CATALOG(TAPE5,PERMANENT,IO=FRIENO)
7/S/9
FORTRAN program that creates TAPES
7/8/9
data cards for FORTRAN program
6/7/8/9

Mounts master device

This job makes a permanent file on the device set MORE.

USE A SET.
MOUNT(VSN=844A,SN=MORE)
SETNAME(MORE)
ATTACH(A,PERt·1ANENT ,ID=FRIENO)
REQUEST(TAPE6,~PF)
COPV(A,TAPE6)
CATALOG(TAPE6,PERMANENT,IO=FRIENO)
FTN.
REQUEST(TAPE5,~PF,SN)

LGO.
CATALOG,TAPE5,PERMFILE,IO=FRIENO.
7/8/9
FORTRAN program
7/8/9
data
6/7/8/9

Mount the master.

Taken from device set MORE by default.
Assigned to public device since no SN parameter.

Makes ftle permanent on the permanent fIle default set.

Assigned to device set MORE as SN is specified but
not equivalenced.
Job uses data and ftle TAPE6 to create me TAPES.

60493800 A

6.

Permanent me PERMANENT is copied from device set MORE to the public device and recataloged with
the same permanent me name and owner ID. A new permanent file is created and cataloged on device
set MORE.

TWO SETS.
MOUNT,SN=OTHER,VSN=123.
MOUNT(VSN=844A,SN=MORE)
SETNAME(MORE)
ATTACH(TAPE5,PERMFILE#ID=FRIEND)

REQUEST(A,~PF,SN=OTHER)

COPY(TAPE5,A)
FTt~ •
LGO.

COPY(TAPE6,A)
CATALOG(A,PERM,ID=FRIENO)
7/8/9
FORTRAN program that creates TAPE6
7/8/9
data cards
6/7/8/9

Mounts master device.
Mounts master device.

File is taken from device set MORE because
of preceding SETNAME.
File directed to device set OrnER since
explicitly requested.

FORTRAN job creates file TAPE6 on system
device as no REQUEST card used.

Permanent me PERM FILE is attached from device set MORE and copied to device set OrnER. A new
me is created on a system device and copied to the same me on device set OrnER. Then the me on
device set OrnER is made permanent.

OPERATING SYSTEM RANDOM FILES

The term random denotes several different concepts, depending on the context in which the word is used.

From a hardware standpoint, random refers to a device. All rotating mass storage devices and ECS are ran­
dom access devices. Any physical address on the disk or ECS is read when the hardware driver receives a
request for information at that address. This is in contrast to a sequential device, such as a card reader or
tape, in which a card or tape block can be read only in the physical order in which it was written. Files
written to random access devices can, but need not, have random structure.

From an applications programmer standpoint, random refers to a me structure and to the means of access­
ing records in a me. CYBER Record Manager and compiler products provide several different random
access file structures in which each record has a key that uniquely identifies the record. The program
can access any record by specifying its key, without considering the records that physically exist before
or after that record. To the operating system, CYBER Record Manager mes with random organization
are sequential meso

From an operating system standpoint, random refers to the means by which the operating system
receives input/output address information. A file on a rotating mass storage device is a random file
only when the random bit is set in the file environment table (FET) which controls all file input/output.
When the· random bit is set and a write is issued, the system writes a record to· the device, then returns

60493800 A 3-11

address information to the FET. The program is responsible for preserving the information returned and
for respecifying that information when the associated record is to be read. See the description of the
Record Request/Return Information field of the FET in section 5 for additional details.

A COMPASS programmer has the option of providing indexing routines for files in which the random bit is set,
or of using the operating system supplied indexing routines. These routines create an index in which records
are identified by name or by number of the entry within the index.

References to random or indexed files in section 5 and 6 assume the name/number index structure described
below. No other random, indexed, or random indexed file structures are "recognized by the operating system.

For information about the random file structures available through CYBER Record Manager or through various
languages, see the reference manual for those products or languages.

NAME/NUMBER INDEX FILES

Name/number indexed files can be created, read, written, and rewritten using the COMPASS macros OPEN,
CLOSE, READIN, WRITOUT, WRITIN, and WRITER. Management of a single index level is provided
through macros OPEN and CLOSE.

Each file has an associated index. The index contains a relative PRU position for each system-logical-record
in the file. The file beginning is equivalent to the start of the record associated with the first index entry;
the file end is equivalent to the end of the record associated with the last index entry. Any record can be
read by identifying it in the index without the need to skip records from some beginning file position.

If a random file is to be saved, the file index must be written as the last logical record on the file. A user
can write the index or call the COMPASS macro CLOSE or CLOSE/UNLOAD to write the index. CLOSE
automatically writes out an index for a random file if the file contents were changed by a write with the
FET random bit set. A permanent file must also have EXTEND permission before the index can be written.

The first word in the index determines how the records are referenced. The index is generated through the
WRITOUT macro. A positive non-zero value indicates reference must be by number; a negative value indicates
reference can be by name or number. Number index entries are one word; name index entries are two words.
The number of a record is equal to the relative position of the index entry for that record; the first entry in
the index points to record 1, the second to record 2, etc. If a name index is used, the record name can be
1 to 7 letters and digits. The value of index word 1 is determined when the first record is written. The
formats of index entries are shown below.

59 23 0

I
Number
Index

o Relative PRU Position

59 23 17 0

Name, Left-Justified with Zero Fill o Name
Index

o Relative PRU Position

3-12 60493800 A

The smallest unit of information that can be indexed is a system-logical-record. Each system-logical-record
must begin in a new PRU. For the most economical index, data record length should be equal to an integral
number of PRUs minus one word.

USER-DEFINED INDEX FILES

Single-level name/number indexed files can be created and maintained using system macros READIN, WRITOUT,
OPEN, and CLOSE; data record management at any level lower than a system-lOgical-record falls to the user.

READIN/WRITOUT can be used to create and maintain index contents during program execution without
using OPEN/CLOSE to manage the index records. The user must manage his index records. They could be
kept on a separate ftle, for example.

Multi-level name/number indexed mes can be created and maintained using READIN/WRITOUT and system
macros OPEN and CLOSE plus a user generated sub-index management routine. A master index record would
contain addresses of sub-index records interspersed throughout the file. The master index record would be
processed by OPEN/CLOSE as is a single-level index record. The user routine would need to ensure that
READIN/WRITOUT would reference the correct index or sub-index block.

Other index formats can be defined by supplying a user routine to format and retrieve record names and mass
storage addresses. Mass storage addresses can be computed on files containing fixed length records, provided
the file is not ECS resident, since the addresses are in the form of a relative PRU count and the PRU size is
flXed.

PERMANENT FILES

A permanent file is a rotating mass storage ftle cataloged by the system, so that its location and identification
are always known to the system. Frequently used programs, subprograms, and data bases are immediately
available to requesting jobs without operator intervention. Permanent ftles cannot be destroyed accidentally
during normal system operation, including normal deadstart; they are protected by the system from unautho~
rized access according to the privacy controls specified when they are created.

Any me associated with a job, regardless of mode or content, which resides on a permanent file device, can be
made perm~nent at the option of the user. Unless the user explicitly requests the system to catalog a ftle, it
is not made permanent.

Files to be made permanent should be created on devices designated for permanent meso Files can be made
permanent on either a public device set or a private device set.

Privacy in permanent ftles is intended to minimize software interference by thwarting. threats to user files
from non-authorized central processor programs. The permanent me system offers a standard set of privacy
controls. If .an installation requires a different kind of protection, a privacy procedure can be defined to
replace the standard.

In addition to normal system protection, the individual ftle owner can prevent unauthorized access to his
permanent me. The owner can stipulate, in cataloging a file, the degree to which the file is to be protected
from read, write, and rewrite access. Once a me is cataloged, it cannot be used by any job unless the
necessary passwords are given when a request is made to attach the me.

·60493800 A 3-13

Permanent mes are processed by the portion of the operating system known as the permanent file manager.
The permanent file manager routines create and maintain several tables: the permanent file directory contains

. a record of all permanent files, their cycles, and passwords; the permanent me catalog contains a record of
the physical location and statistics associated with each permanent me. As long as these tables are intact,
permanent files are available.

Permanent fIles can be processed through control statements and macros. For information· pertinent only to
COMPASS programmers, see section 6.

CONCEPTS

The following information describes concepts applicable to all permanent files.

FILE IDENTIFICATION

A permanent file is identified in system tables by the combined information supplied by a pfn, ID, and CY
parameter when the file is made permanent with a CATALOG control statement.

pfn

ID=name

CY=cy

Permanent fIle name of 1-40 letters or digits.

Name of user responsible for file, 1-9 letters or digits. The ID specified must be unique
if pfn is duplicated within the system. ID=SYSTEM is reserved for system use.

Cycle number 1-999. As many as five physical fIles can exist for each permanent fIle
name and ID combination. Each is called a cycle. Each file shares the same ID and
set of passwords. No restrictions are imposed on the content or size of any cycle, since
each is a unique file.

The pfn parameter is required for both the catalog request that makes a file permanent and the attach request
that associates an existing permanent file with a job. When the first seven characters of the permanent fIle
name are the same as the logical file name, the permanent file name can serve as both the pfn and lfn param­
eters. If the ID is not specified, ID=PUBLIC is assumed. If the me is cataloged with ID=PUBLIC, the ID
parameter can 'be omitted for the attach; for any other name except PUBLIC, the ID parameter is required
on the attach. An installation defmed password is needed to catalog a file with ID=PUBLIC.

The CY parameter is optional. Cycle numbers need not be consecutive nor contiguous; they can be created in
any order. At CATALOG time,the system assigns a cycle number one greater than the largest existing cycle
number in the follOwing cases:

CY parameter is omitted

CY parameter duplicates the number of an existing cycle

CY parameter is not within range of 1-999.

System assignment of a cycle number is not possible when the cycle 999 exists, and the catalog request for an
additional cycle is unsuccessful.

3-14 60493800 A

PERMISSIONS AND PASSWORDS

All user files have a 4-bit permission code. Each bit represents an access permission as defined below:

READ permission: Required to read a file, load a file, or copy a file.

MODIFY permission: Required to rewrite existing data or evict part of a fIle.

EXTEND permission: Required to evict part of a file or increase the amount of mass storage allocated
to a particular file.

CONTROL permission: Required to purge a file, or catalog a new cycle of an existing pfn/ID file.

The RENAME and CATALOG functions require all four permissions.

Files in use by a job, other than permanent files, have all access permissions except for the file INPUT, which
has only READ and EXTEND permissions. Permanent files have only those permissions granted by ATTACH
parameters. A purged permanent file, when still associated with the job that purged it, has only those per­
missions it had as an attached permanent file.

Permissions are established originally by parameters on the CATALOG control statement or macro, although
they can be changed through RENAME. Passwords are a string of 1-9 letters or digits. They are defined on
a CATALOG control statement by the following parameters;

RD=rd

EX=ex

MD=md

CN=cn

XR=xr

TK=tk

Establishes password required for read permission.

Establishes password required for extend permission.

Establishes password required for modify permission.

Establishes password required for control permission.

Establishes password required for extend, modify, and control permission. Any EX, MD,
or CN parameter overrides this password.

Establishes password that is required in addition to a password for a particular permission.

Any job using an existing permanent file must supply correct passwords in order to receive permission for
functions protected by a password. On an ATTACH, RENAME, or PURGE, or on a CATALOG of a new
cycle, passwords are submitted with the PW parameter, not the parameter used to create the password:

PW=pwl,pw2,pw3,pw4,pw5 1-5 passwords for specific permissions.

MULTIPLE ACCESS

More than one job might have a given permanent file attached at the same time depending on the permissions
involved and the use of the RW (single write/rewrite) and MR (multi-read) parameters. Many jobs can be
reading a file, but only one can have modify, extend, or control permission. Use of parameters that allow
multi-access is encouraged.

60493800 A 3-15

When a file is cataloged initially, it remains associated with the job with all permissions, except when MR= 1
or RW=1 is specified on the CATALOG request. In the absence of RW=1 or'MR=1 on the CATALOG request,
no other job can attach the file until the creating job returns it to the control of the permanent file manager,
since any job with control permission has exclusive file access. However, an RW=1 or MR=1 parameter makes
the file immediately available, on a read-only basis, to any other attaching job, but cancels all permissions except
read for MR=1 and cancels control permission for RW=1.

An RW=1 or MR=1 parameter on an attach request restricts permissions that might otherwise be granted. An
MR=1 cancels all permissions except read; an RW=1 parameter cancels control permission but retains modify,
extend, and read permission. RW=1 overrides MR=I.

RW=O or RW unspecified on an attach results in exclusive access if control, modify, or extend permission is
granted.

QUEUED AND ARCHIVED FILES

Job requests to attach a permanent file usually are executed immediately. If a job cannot attach a fIle
immediately, it attempts to enter that file in a queue. Four conditions can cause a job making a perma­
nent file request to be placed into the permanent fIle queue:

The TRANSPF utility is running

The attached permanent file table, which is necessary for CATALOG ot ATTACH, is full

File to be attached is not available for type of access requested

File to be attached is archived

The job remains in the permanent me queue until the attach can be honored or until the user or operator
aborts the' request.

At some installations, permanent files physically reside on rotating mass storage devices at all times and are
immediately available to a requesting job. At other installations, some permanent files might be dumped to
a tape through, the DUMPF utility; such mes are not available to a requesting job until they are reloaded
through the LOADPF utility.

A permanent file physically on tape, but known to the system through permanent me table information, is
defined as an archived file. The archiving process does not affect the file's status as a permanent fIle, so
the fIle does not need to be re-cataloged. An archived file must be returned to mass storage before the job
can read or write the file. An archived file can be purged, however, when still on tape, since only system
tables are affected by a purge function.

Requests for attach of an archived file might or might not be honored depending on installation procedures.
When the system receives a request for an attach of an archived permanent me, the system informs the
operator of the request and indicates the. VSN of the tape required. The operator mounts the specified tape,
then authorizes the load by entering a command from the keyboard. The job continues when the file is
available.

3-16 60493800 B

A request for an archived fue submitted interactively through a remote terminal produces a message at the
terminal:

REQUEST FOR ARCHIVED FILE - WAITING FOR CENTRAL OPERATOR DROP OR GO

In response to a GO command from the operator, the job is put into the permanent me queue, the message
WAITING FOR ARCHIVED FILE is sent to the terminal user, and a job is set up at another control point
to retrieve the file from tape. The INTERCOM user must wait for retrieval to be completed before the me
is attached. In response to DROP, the fIle is not brought into the system and the attach request is terminated.

Once the WAITING FOR ARCHIVED FILE message appears at the terminal, the terminal user has the option
of waiting for the fue to be made available or of continuing with other tasks. An abort command after the
central site operator enters GO affects the attach request itself, but does not affect the reloading of the fue
to mass storage. Consequently, the following procedure can save time during interactive processing:

Enter command to attach fIle,

Wait until WAITING FOR ARCHIVED FILE message appears,

Enter abort command,

Continue with other operations,

Reissue attach command.

The second attach command should execute immediately since the file should have been returned to mass
storage while other terminal operations proceeded.

INCOMPLETE CYCLES

Incomplete cycles might exist as the result of abnormal termination of a permanent me manager function.
They might also be created by a normal deadstart taking place during a permanent file function. The fue is
automatically purged when the me is returned, or during end-of-job processing. To remove an incomplete
cycle from the system, the me must be attached with the cycle number explicitly stated and with control
permission.

Execution of the AUDIT utility with an· MO=I parameter reveals the existence of any ·such incomplete cycles.

USAGE

BATCH JOB USAGE

Permanent mes are manipulated by the following control statements at a single mainframe installation. At
linked multi-mainframe . sites, these statements are used when the permanent me resides at the site at which
the job is submitted and executed.

CATALOG

60493800 A

Make a local rotating mass storage file permanent with a particular name and owner.
Parameters on the CATALOG statement become part of a system table that controls
all further file use.

3-17

I

I

ATTACH Associate a permanent fIle with a job. Parameters on the ATTACH statement must
agree with privacy controls of CATALOG to establish the right to access the file.

PURGE Delete a permanent file by deleting system table information. The file itself remains
attached to the job as a local file.

EXTEND Increase the size of an attached permanent me.

RENAME Change system information established when the. fIle was cataloged.

ALTER Change the size of an attached permanent file.

When the permanent fIle resides at a linked multi-mainframe site other than that at which the job executes,
the following statements must be used instead of the ones listed above:

SAVEPF

GETPF

Create a permanent file on a public device at the system identified by the ST
parameter. Parameters on the SAVEPF statement become part of a system table
that controls all further fIle use.

Assign permanent fIle residing on the system specified by the ST parameter to the
job. Parameters on the GETPF must agree with privacy controls of SAVEPF to
establish the right to access the file.

For a single· file, the CATALOG, SAVEPF, ATTACH, and GETPF control statements can be combined as
required to access the permanent fIle from a given system. A fIle cataloged with' CATALOG can be attached
with GETPF.

Table 3-1 summarizes parameters applicable to permanent me functions. Any parameter not applicable to a given
control statement is ignored. The control statements and their parameters are explained in section 4.

TABLE 3-1. PERMANENT FILE PARAMETERS

lfn/pfn AC eN CY EC EX FO ID LC MD MR PW RB RD RP RW TK XR SN

CATALOG ·both or one * * * * * + * * * * * * * *
SAVEPF. both or one * * * * * + * * * * * * * * 0

ATTACH' both or one * * * + * * * * *
GETPF both or one * * * + * * * 0 0

PURGE both or one * * * t * * * * * *
RENAME lfn pfntt * * * * * * * * * * *
EXTEND lfn

ALTER lfn

+ required * optional t special case o ignored with message

ttapplicable only when pfn is not attached

ST

+

+

+

*

3-18 60493800 C

Four utility routines exist explicitly for permanent me use:

AUDIT Reports the status of permanent meso

DUMPF Dumps mes to tape for backup or temporary storage as archived files.

LOADPF Loads permanent files that have been dumped by DUMPF.

TRANSPF Moves permanent files and permanent file tables between members of a device set
and moves files from one device set to another.

These utilities can be called such that all permanent mes are affected or that only files pertaining to a given
ID, device, or use are affected.

Files to be made permanent must reside on a device that the ADDSET control statement establishes as a
permanent file device. The user job can create a me on a permanent file device in two ways:

If the me is to be cataloged on a public permanent me device or on a private device whose VSN is not
known, the *PF parameter should be specified on the REQUEST statement that establishes the me.

If the me is to be cataloged on a public or private device with a volume serial number known to be the
number of a permanent me device, the VSN parameter should be specified on the REQUEST.

Cataloging a file results in entries in system permanent file tables. The me remains attached to the job
and can be used as any attached permanent me. At the termination of the job that cataloged the me,
the system detaches the file. The job can, but need not, execute a RETURN or UNLOAD function to
detach the me.

INTERCOM USAGE

From the terminal, the INTERCOM user can create, attach, and purge permanent files in any of three ways:

Through standard macros within the user's own interactively run COMPASS program.

By entering the commands ATTACH, CATALOG, etc., as if they were control statements in a batch
INPUT me.

By using the special INTERCOM commands FETCH, STORE and DISCARD. These commands allow
the user to create and use permanent files with certain restrictions.

Files created by the STORE command cannot have any passwords. The only parameters for STORE are:
mename, user id. The permanent me name and the local me name are the same, user id is required accord­
ing to installation options. If a required parameter is missing, it is requested from the user.

When a permanent file has been created through the STORE command, the user can access it through the
ATTACH or FETCH commands. FETCH parameter requirements are the same as for STORE.

60493800 A 3-19

Similarly, the DISCARD command as well as the PURGE command can be' used to purge a permanent me
created by the STORE command. DISCARD has the same parameter requirements as STORE, with the ex­
ception that the user id parameter can be omitted if the file is already attached. Since execution of the
DISCARD control statement involves both a PURGE and a RETURN, the purged me does not remain as a
local file after the DISCARD is executed.

From an INTERCOM terminal, private device sets can be used but not created. The commands MOUNT,
DSMOUNT, etc., can be entered as if they were control statements in a batch input file. LABELMS,
RECOVER, DELSET and ADDSET commands cannot be entered from INTERCOM. A MOUNT of the
master device must be the first reference to a device set. After the master has been mounted, the REQUEST
command and the permanent file commands ATTACH, CATALOG, etc., with SN parameters can be used to
access device sets. A file written on a private device set can be made permanent with the STORE command.
FETCH can be used to attach a device set resident permanent file only after a SETNAME command has been
issued. If a private device set resident permanent file has been attached, it can be purged with DISCARD; if
it has not been attached it cannot be purged with DISCARD.

If an INTERCOM job enters into the permanent me queue because a permanent me request cannot be
honored immediately, the user is informed by one of the following messages:

WAITING FOR PF UTILITY

WAITING FOR APF SPACE

WAITING FOR ACCESS TO FILE

WAITING FOR ARCHIVED FILE

WAITING FOR VSN=nnnnnn,SN=setname

Examples of INTERCOM interactive permanent file use:

In these examples, the information output by the INTERCOM system on the terminal display is underlined to
distinguish it from that entered by the user; this does not actually occur on the output. The symbol 1\ denotes
carriage return.

1. COMMAND-STORE,MYFILE.A

ID=RKCA

The installation requires a user id parameter; the user me called MYFILE is made permanent.

2. COMMAND-FETCH,MYFILE,RKC."

COMMAND-DISCARD,MYFILE.A

During a later session the user attaches the me and then purges it.

3-20 60493800 A

ACCOUNTING

If the installation chooses, messages are sent to both the system and user dayfIles whenever the status of a
referenced permanent fIle changes. The messages are as follows:

For CATALOG: CT ID=xxxxxxxxx PFN=pfname
CT CY= mmm nnnnnnn WORDS.
CT SN=sssssss

For EXTEND/ALTER: EX ID=xxxxxxXxx PFN=pfname
EX CY= mmm nnnnnnnn WORDS.

For PURGE: PR ID=xxxxxxxxx PFN=pfname
PR CY= mmm nnnnnnnn WORDS.

For RENAME (old permanent fIle): NM ID=xxxxxxxxx PFN=pfname
NM CY= mmm nnnnnnnn WORDS.

For RENAME (new permanent fue): RN ID=xxxxxxxxx PFN=pfname
RN CY= mmm nnnnnnnn WORDS.

The first two characters of each line identify the permanent file function that caused a status change. Other
parameters are:

ID=xxxxxxxxx Name which identifies the fIle owner or creator

PFN=pfname Permanent me name which identifies the file

CY= mmm Cycle number, 1-999,. assigned by creator.

nnnnnnnn WORDS Amount of mass storage space occupied by the file, given in decimal number of
central memory words.

SN=sssssss Setname . of file if it resides on a public set which is not the PF default.

EXAMPLES

The examples below form a continuous set. Many ATTACH; RENAME, and PURGE examples presume files
established by CATALOG examples.

CATALOG EXAMPLES

The first set of examples demonstrate initial catalogs; the permanent file name is unique to the ID specified.

1. CATALOG(LFN,LFN,ID-RENOIR)

CATALOG(LFN,ID-RENOIR)

60493800 A 3-21

These statements achieve the same effect. Any time the permanent me name is omitted, it is assumed
to be the same as the logical rue name. The cycle number is one.

2. CATALOG(LFRl,PERMARENTFILE,ID-REROIR,CY-lO)

The first cycle cataloged can have a cycle number greater than one.

3. CATALOG (LFN2 ,PFILE, ID-RENOIR, C~·-O)

The cycle number of the permanent me, PFILE, is one since an illegal cycle number is specified. The
cycle number must be 1 through 999. Otherwise, the parameter is ignored.

4. CATALOG(WATER,LILIES,ID-CMORET,XR-X)

CATALOG(WATER,LILIES,ID-CMORET,MD-X,CR=X,EX=X)

These two control statements demonstrate the XR parameter and have the same effect. X is the pass­
word for control, modify and extend access.

5. CATALOG(AA,B,ID-SEURAT,XR-Y,CN-Z)

CATALOG(AA,B,ID-SEURAT,MD-Y,EX-Y,CR=Z)

These two control statements have the same effect, further demonstrating use of the XR parameter.

6. CATALOG(C,F,ID-SIGRAC,FO-IS,MD-X,EX=Y)

If a data validity check reveals the me is an indexed sequential, direct access, or actual key file, extend
permission becomes insert permission, and modify permission becomes replace permission. If the me is
not an IS, DA, or AK file, the FO parameter is ignored.

7. CATALOG (LFF ,PI', ID-MATISSE,RP-5, CY=4,RD-X,CR-Y ,MD-A, TK=C ,AC-7,77, MR-l)

Since the MR parameter is non-zero, LFF has only read permission upon catalog completion. The follow­
ing items are defined at catalog time:

Read password
Control password
~odify password
Turnkey password
Account parameter
Cycle number
Retention period

x
y
A
C
777
4
5 days

Assuming the previous examples to be successful initial catalogs, the following examples demonstrate new-cycle
catalogs. A me already has been cataloged with the permanent me name and ID specified.

8. CATALOG (Z, LFR, ID-RENOIR)

CATALOG(Z,LFN,ID-RENOIR,CY-2)

These control statements catalog a cycle with a cycle number one higher than the largest (in this case 1).
This new-cycle catalog does not require passwords because a control password was not defined.

3-22 60493800 A

9. CATALOG(LFN22,PERMANENTFILE,ID=RENOIR,CY=lO)

Assuming a cycle 10 already exists, this control statement causes cycle 11 to be cataloged. An invalid
cycle number is treated as no cycle number. This new-cycle catalog does not require passwords because
a control password was not defined at initial catalog time.

10. CATALOG(LFF,PF,ID=MATISSE,CY=5,PW=Y)

If a control password is defined at initial catalog, it is necessary to submit the control password using the
PW parameter. Control permission is required to add a new cycle.

11. CATALOG(LFF,PFl,ID=PUBLIC,PW=XYZ)

A me can be cataloged with an ID of PUBLIC if the public password is submitted.,-defined by the
installation as XYZ in this example. This enables an installation to define permanent files that can be
attached by all users without specifying an ID.

12. CATALOG (PERMANENTFILENAME, ID=MOREAU)

A catalog function is attempted using the first seven characters of the permanent file name as the logical
me name. If the logical file name is omitted, the first character of the permanent file name must be
alphabetic y or the job is terminated.

ATTACH EXAMPLES

1. ATTACH(LFN,ID=RENOIR)

ATTACH(LFN,LFN,fD=RENOfR)

Assuming catalog example 8 was· successful, these two control statements perform the same function. If
the permanent hIe name is omitted, it is assumed to be the same as the logical file name. Cycle 2 is
attached since that is the highest cycle number.

2. ATTACH(LFA,PF,ID=MATISSE,PW=X,C,EC=K)

Assuming catalog example 7 was successful, cycle 4 of the permanent file, PF is attached with read and
extend permission. During execution the permanent file is referred to by the logical file name, LF A.
A standard size ECS buffer is established for the file.

3. ATTACH(PERMANENTFILENAME,ID=RENOIR)

An attempt is made to attach the permanent file, PERMANENTFILENAME, under the logical file name,
PERMANE. The first seven characters must be letters or numbers and begin with a letter if the logical
file name is omitted in the attach call.

4. MOUNT(SN=SCIFI,VSN=999)

SETNAME,SCIFI.

ATTACH (DUNE,I D=H E RBERT)

SETNAME.

MOUNT,VSN=999,SN=SCIFI.

ATTACH,DUNE,ID=HERBERT,SN=SCIFI.

Both examples have the same effect, the permanent file DUNE is attached to the job. The master device
of the device set SCIFI must be mounted before this function is issued.

60493800 A 3-23

ATT ACH(WATER,LI LLlES,ID=CMONET,MR=1)

or
ATTACH(WATER,LlLLlES,ID=CMONET)

Assuming CATALOG example 4 was successful, these two control statements perform the same function
of attaching logical file WATER with multi-read permission.

RENAME EXAMPLES

1. Assume PFILE was cataloged by owner ABC with read password X, extend password Y, and modify
password Z. Control is granted automatically.

ATTACH(LFILE,PFILE,ID=ABC,PW=Y,Z,X)

RENAME(LFILE,PFILE2,RD=,CN=W)

The permanent file name PFILE is replaced by PFILE2 (if no other permanent file named PFILE2,ID=
ABC exists). The read password is removed (succeeding users are given read permission automatically)
and a password for control permission is cataloged. The existing passwords for extend and modify
remain unchanged. Since the changes involve the permanent file name and passwords, the changes apply
to all cataloged cycles of the file. This would also have been true if the owner ID had been changed.

2. ATTACH(LFN,ID=UTRILLO)

RENAME(LFN"ID=UTRILLO,RD=A,RP=9)

RENAME(LFN,LFN,ID=UTRILLO,RD=A,RP=9)

RENAME defines a READ password for the permanent file LFN, and redefines the retention period.
Omission of the permanent file name in the first RENAME indicates no name change is to occur. The
two RENAME control statements are identical in function. This example also demonstrates that more
than one RENAME function can be issued consecutively.

3. ATTACH(LFN"ID=SISLEY,PW=A)

RENAME(LFN"ID=SISLEY,RD=)

The definition of A as the READ password is removed from the permanent file, LFN.

PURGE EXAMPLES

1. ATTACH(LFN,ID=RODIN)

PURGE(LFN) or PURGE(LFN,ID=RODIN)

Both sequences perform the same function.

When a purge is performed, permanent file table information for the file is removed, but the file remains
available to the job with permissions existing when it was purged. At least control permission is implied.

2. PURGE(PERMANENTFILENAME,ID=PISSARO)

3-24 60493800 A

If the . purge is successful, the permanent file, PERMANENTFILENAME, no longer exists. Permanent file
table information for the file is removed. The purge is not successful if the logical file name is omitted
in the call and the first character of the permanent file name is not alphabetic.

3. PURGE(PERMANENTFILE, ID-RENOIR,LC=l)

Assuming catalog examples 2 and 9 were successful, cycle lOis purged.

4. ATTACH,FAUVE,PF, IO=MATISSE,PW=Y ,C .•
PURGE(FAUVE)

Assuming catalog examples 7 and 10 were successful, cycle 5 is purged and remains attached to the job
as a non-permanent file FAUVE with only control permission.

5. PURGE(OUNEMESSIAH,IO=HERBERT,SN=SCIFU

Assuming the master device of the set SCIFI was mounted by this job, the permanent file DUNEMESSIAH
is purged and remains as a local fIle with lfn DUNEMES.

6. ATTACH(REO,LASER,ID=lIGHT,PW=CONTROL'

PURGE(BLUE.LASER.I D=lIGHT'

Because the PF cycle specified on the PURGE control statement was already attached, (even though with
a different lfn) the purge is successful with RED as the resultant local file.

AL TER/EXTEND EXAMPLE

To replace an existing cataloged permanent fIle by using the ALTER/EXTEND sequence:

A TT ACH(LFN,PFN,I D=WHO,PW=MO,EX)

REWIND(LFN)

ALTER(LFN)

COPVBF(NEW,LFN)

EXTENO(LFN)

EXTENDED CORE STORAGE FILES

passwords for modify and extend are required

release old PF data
write new data
make new data permanent

Extended Core Storage (ECS) can be used to buffer flIes and/or store mes (as EeS resident mes). Each me so
designated is assigned a single buffer in the ECS paged partition. This paged buffer is assigned pages up to the
limit specified by REQUEST or ATTACH. User input/output through EeS buffers or to an ECS resident me is
performed in the same manner as any other mass storage input/output. EeS buffered mes are more flexible than
ECS resident mes since EeS resident files are not allowed to overflow to other mass storage devices.

ECS BUFFERED FI LES

Sequentially accessed mass storage fIles on public device sets can be buffered through ECS to avoid the costly
access time of rotating mass storage devices each time a small amount of information is transferred. In order to
optimize the access to such devices, a larger amount of information is transferred between the device and ECS at
the time of each access. For each CIO call, regular smaller transfers between ECS and the user central memory
buffer take place at a high transfer rate without mass storage device access.

60493800 A 3-25

The information read ahead (input file) or waiting to be written (output file) is 'stored temporarily in an ECS
buffer. The underflow and overflow functions for these ECS buffers are performed automatically by the system.
On a write function, system programs transfer data from the fue's circular buffer in central memory to the Ees
buffer. When the ECS buffer is fdled to the maximum size defined by REQUEST or ATTACH, it is written to
mass storage. On a read, the ECS buffer is filled in advance from disk, and data is transferred to the circular
buffer in central memory as the circular buffer is emptied.

The ECS buffers are requested on a file-by-file basis through the REQUEST control statement or macro, or
through an ATTACH statement or macro. A different buffer size can be specified for each file if the standard
buffer size is not desired.

The data contained in an ECS buffer is written to a mass storage device only if the file is closed or exceeds the
limit of the ECS buffer.

For optimum performance, the ECS buffer should be many times the size of the user's CM circular buffer.
This ensures that the system overhead associated with ECS buffer management is small compared to the time
saved as a result of performing fewer device accesses. Suggested relative buffer sizes. are:

eM Circular Buffer

1000 octal words or less
1001 - 2000 octal words
2001 octal words or greater

Ees Buffer

10000 octal words or less
10000 - 20000 octal words
20000 octal words or more

For I/O bound programs. using large central memory circular buffers there is little advantage in using I/O
buffering. In general, an I/O buffer can be used to reduce the central memory buffer size while maintaining
the high transfer rates associated with having large central memory circular buffers. Throughput on I/O
buffered files is primarily a function of the ECS buffer size, rather than the central memory circular buffer
size.

If an unrecovered ECS parity error is encountered with the EP bit set, control is returned to the user program
with the error noted in the code and status field of the FET. If the error occurs with the EP bit off, a GO
or DROP decision is required. of the operator.

ECS RESIDENT FILES

This facility is provided as an installation option selected when the system tape is built. Except for some
specific applications where a faster, limited rotating mass storage device is needed, it is generally preferable
to use the I/O buffering scheme instead of Ees resident files. I/O buffering allows an overall optimization
of the system.

Nevertheless, under this option any non-permanent sequential or random file can be ECS resident. ECS
resident flles are requested on a ftle-by-flle basis. REQUEST has the same format as the one used for buffer
allocation with the addition of the device type mnemonic of AX. If no EC parameter is present on the
REQUEST, the flle is limited to the default I/O buffer size specified at deadstart time. Otherwise, the EC
parameter specifies the flle size limit.

When an overflow occurs, i.e., all BCS pages are allocated or the maximum. ftle size is exceeded, an error code
1 0 (device capacity exceeded) is stored in bits 9-13 of the code/status field and control is transferred to the
user if the EP bit is on, else the job is aborted.

3-26 60493800 A

NOTE

If ECS is turned OFF, all requests for ECS buffers are ignored and the
flles requested on ECS are allocated on other mass storage devices.

MAGNETIC TAPE FILES

A single reel of magnetic tape is known as a volume. A volume set can consist of:

A single flle on one volume

A multiftle set on a single volume

A multivolume flle extending over more than one volume

A multivolume, multifile set extending over more than one volume

All· information on a magnetic tape begins after a physical reflective spot known as the load point. When this
is sensed by a photoelectric cell, the tape is at its load point. Another physical reflective spot appeal'S near
the end of all tapes; it warns the software to initiate end-of-tape procedures.

The structure of a tape file, such as the number of characters in a block and the definition of end-of-information,
is affected by these characteristics:

Physical recording is 7 -track or 9-track

Format is SI format (standard $ystem format), S format, or L format

Standard labels exist or do not exist

See appendix D for a summary of tape characteristics.

The default tape characteristics assumed by the system are an unlabeled 7-track tape recorded at an installation­
defined default density in SI format. Any other tape density, format, or label must be explicitly declared by
a REQUEST or LABEL statement.

60493800 C 3-27

I

I NOISE BRACKETS (657 AND 659 TAPE DRIVES)

Noise brackets, or system noise records, are 24-bit blocks written on both sides of a damaged section of mag­
netic tape to aid the hardware in positioning over a spot where erasure has not been complete. Noise brackets
are transparent to the user because the operating system discards them as noise when reading the tape. The
size of the records causes them to fall in the category defined by ANSI as noise, and any system conforming
to strict ANSI standards would discard them as such.· The user should be aware, however, that the presence of
noise brackets on a tape would make that tape unreadable on any system that did not discard 24-bit blocks
as noise. F or this reason, it is suggested the user include the IB parameter on the tape request when writing
tapes for data interchange purposes, but remove it to take advantage of the added reliability associated with
noise brackets when writing tapes not destined for interchange. Noise brackets are always inhibited by the
operating system when phase encoded (PE density) tapes are written. The IB parameter is ignored when
L tapes are written; noise brackets are never inhibited on L tapes.

I TAPE MARKS

I

A tape mark is a short record used on SI tapes to separate label groups and, mes from label information. On
Sand L tapes, it can also separate mes in addition to separating label groups. Interpretation of multiple tape
marks depends on the tape format. The format of a tape mark is defined by the ANSI standard, described
later in this section. These tape mark records are written by operating system routines. On S and L tapes,
tape marks can be written by the COMPASS macro WRITEF.

DATA FORMAT

Three data formats exist:

SI System default format

S Stranger tape format

L Long Stranger tape format (supported on 657, 667, 669, and 679 tape drives only)

SI format is assumed unless an F=S or F=L parameter appears in a LABEL control statement, or unless S or
L is. explicitly declared on a REQUEST control statement. Both binary and coded data can be recorded in
any of these formats.

3-28 60493800 C

SI TAPES

SI format tape is the system standard. The structure of information on these tapes corresponds to the struc­
ture of ftles on rotating mass storage: each block on the tape is a physical record unit, with the end of a
system-logical-record defined by the presence of a short or zero-length PRU.

The size of a PRU on tape depends on whether the data is written in coded or binary mode:

For coded tapes, a PRU is the contents of 128 central memory words.

For binary tapes, a PRU is the contents of 512 central memory words.

The short or zero-length PRU that terminates a. record is less than full PRU size.

Each system-logical-record is terminated with a 48-bit marker that contains a level number. The marker is
appended to the data in the peripheral processor when the tape is written and stripped from the data when
the tape is read; only data passes from the tape to a user program in central memory.

A level number of 17 indicates an end-of-partition. Level 17 is always written as a zero-length PRU.

When an output ftle on an SI tape is closed, the operating system appends up to four items: a level 17 zero- I
length PRU,t a single tape mark, trailer label information for both labeled and unlabeled tapes, and a double
tape mark. The file is then positioned to the beginning of the single tape mark. If more information is written
to the tape, only the level 17 marker indicating an end-of-partition remains. If the tape is, instead, rewound
or unloaded, the four items exist to define end-of-information.

The SI tape structure that results from a request for an unlabeled tape is:

File-

----------------~-------------~

Load Point

Partition

Level 17 Marker

Tape Mark

End-of-Tape Reflector

EOF1
Trailer
Label

*

~

Double
Tape Mark

tThe presence of a level 17 PRU depends upon the procedures the programmer uses to close the file.
For example, a COBOL CLOSE or a FORTRAN ENDFILE statement writes the level 17 PRU.

60493800 C 3-29

I

The SI tape structure that results from an unlabeled tape in which the file specified on the REQUEST control
statement is opened and closed four times is:

File
__ ~~~~~~~~~~~~~~~~~~~~~--- End~~Ta~ R~lector~

Partition Partition Partition

Load Point

Partition

Tape Mark/

EOF1
Trailer
Label

~

Double Tape Mark

The same structure is obtained when the program opens the me, writes data and issues an instruction to write
an end-of-partition, repeats the data and partition instructions twice more, then closes the file.

Coded information is written on 7-track SI tape in external BCD format shown in appendix A. On a 9-track
SI tape, data is written in packed (binary) mode for both coded and binary data. Records are always an even
multiple of 10 characters.

SAND L TAPES

Data on Sand L tapes is written in physical blocks separated by interblock gaps. S tape blocks are longer
than noise size and shorter than or equal to 512 central memory words. L tape blocks are longer than noise
size and shorter than the user buffer for the tape.

Neither S nor L tapes contain system-logical-records of various levels as do SI format tapes. The only records
are the physical blocks; and the file is physically delimited by tape marks. The last me on an unlabeled S or
L tape is terminated by four tape marks, but these are not recognized as end-of-information in the same sense
as a label. The user must use the four tape marks, or marks within the data, to recognize end-of-information
and initiate end-of-information processing.

The S or L tape structure that results from a request fo! an unlabeled tape when the file is opened and
closed three times, or is opened once and has two partitions written before the file is closed, is:

File

Partition Partition *

Load Point Tape Mark

Partition

Tape Mark

*

.., V' 1"

4 Tape Marks
Terminating
Information

On a labeled S or L tape, an EOFI label replaces the second terminating tape mark. The system recognizes
the EOFI label as end-of-information for the tape and initiates end-of-information processing as indicated by
the user.

Noise size, nominally 6 characters for both Sand L tapes, can be changed by the installation. Blocks shorter
than or equal to noise size are not delivered to the user on read operations. An attempt to write a block
shorter than or equal to noise size causes an error.

3-30 60493800 B

In COMPASS, the maximum logical record size (MLRS) and unused bit count (UBC) fields in word 7 of the
FET should be declared when S or L tapes are processed. MLRS declares the maximum number of 60-bit
central memory words in the block. The last word might not be full of data since S and L tape blocks are
measured in characters instead of words. UBC must declare the number of bits not used in the last trans­
mitted word. On a write operation, the operating system rounds down the UBC so that an integral number
of characters are written. The discussion of the FEr fields that appears in section 5 explains these concepts
in more detail.

If the MLRS and UBC are not declared, the system assigns default values. The default for UBC is zero. The
default for MLRS is 512 words for S tapes and two words less than the user buffer size for L tapes.

7-TRACK VS. 9-TRACK TAPES

Both 7-track and 9-track ~-inch magnetic tape can be processed by the operating system. Parameters on
REQUEST and LABEL statements differ for recording densities, data format, and character conversion. Other­
wise, label characteristics and tape usage are the same for both, except that 9-track L tapes are supported only I
on 669 and 679 Tape Drives.

7-TRACK TAPE

Seven-track tapes are processed by 657 and 667 Tape Drives. Data can be recorded in three densities:

Lot 200 bpi (low)

HI 556 bpi (high)

HY 800 bpi (hyper)

Installation-defined default densities are used for reading unlabeled tapes and writing both labeled and unlabeled
tapes in the absence of explicit declaration. The density of the label determines data density for reading
labeled input tapes. However, it is always advisable to specify density because of the reading peculiarities of
the tape drives. A tape label can be read at an incorrect density without causing a parity error; longer data
blocks read at an incorrect density cause parity errors.

On a REQUEST statement, MT explicitly defines this tape as 7-track: LO, HI, or HY provides an implicit
definition. On a LABEL statement, 7 -track is assumed unless 9-track is specifically declared.

9-TRACK TAPE

I

Nine-track tape is processed on CDC 659, 669, and 679 Tape Units. On a REQUEST control statement, an I
NT parameter explicitly specifies a 9-track tape. On both REQUEST and LABEL control statements, a .
density specification of HD, PE, or GE implicitly specifies a 9-track tape.

tData cannot be written at 200 bpi on CDC 667 Tape Drives although 667 drives can read 200 bpi tapes.

60493800 C 3-31

Under hardware control, 9-track tap~s are always read at the density at which they were written. Writing
density is determined by an installation default or by tlle density parameter on the REQUEST or LABEL
control statement. Density parameters are:

HD 800 cpi (high density) applies to 659 and 669 Tape Drives

PE 1600 cpi (phase encoded) applies to 659,669, and 679 Tape Drives

GE 6250 cpi (group encoded) applies to 679 Tape Drives

Data on SI format 9-track tape appears in memory as it exists on tape. Data· is not converted while being
transferred between devices.

When S or L format 9-track tapes are written or read, however, processing depends on whether the tape is
binary or coded. Binary tape processing is the same as SI format tape processing, with no conversion. Data
on coded Sand· L tapes is converted between the tape and memory. Data in the user buffer in central
memory is assumed to consist of a string of 6-bit display code characters. The display code characters are
mapped into 8-bit characters when written to the tape. The 8-bit characters can be a subset of either ASCII
or EBCDIC, as specified by the REQUEST or LABEL control statement. Conversion from 8-bit characters to
6-bit characters takes place when the tape is read in conversion mode. The parameters on the REQUEST or
LABEL control statement that select conversion mode are:

US ASCII conversion

EB EBCDIC conversion

TAPE LABELS

Labels on a tape consist of 80-character records that id~ntify the volume of tape and ftles it contains. They
are the first records after the load point marker. Labels can appear on all tapes. A label record has a
particular format: the first four characters of the label are VOLI. Any tape that begins with characters
other than VOLI is considered to be unlabeled.

Two types of labels are recognized: standard system labels and Z labels.

Standard system labels conform to labels defined by the American National Standard, Magnetic Tape
Labels for Information Interchange§ X3.27-l969. Density of the label is the same as the density at
which the data on the tape is recorded. Standard system labels are requested with a U parameter on
a REQUEST control statement or macro; on a LABEL control statement or macro, the absence of a
Z parameter requests a standard label.

Z labels conform to an earlier ANSI standard in which the density of the label and the density of the
data were not necessarily the same. Z labels are similar to standard labels, except that character 12 of
the VOLI specifies the density of the data. When a Z-label tape is being read, the system changes the
read density, if necessary, during label processing. When a Z label is written, the system treats a Z
label as a standard label. Z labels are requested with a Z parameter on a REQUEST or LABEL control
statement or macro.

Labeled tapes provide the following advantages for the User:

3-32

When a write ring is left inadvertently in an input tape reel, software checking ensures that no part of
the tape is over-written without the express permission of the operator.

60493800 C

The number of blocks written on a me is recorded in the me trailer label, as well as in the job dayfile.
On subsequent me reading, the count serves as additional verification that data was read properly.

The volume number field of the label ensures processing of all volumes in the proper sequence.

Multi-file volumes with ANSI labels can be positioned by label name, rather than by file count only.

The volume serial number of any ANSI label read or written is recorded in the dayfIle.

Overall job processing time is reduced when the system can use the VSN field to locate and assign a tape
to the requesting job without operator action at the keyboard.

The maximum benefit from the operating system tape scheduling and automatic tape assignment features can be
derived only if all magnetic tapes used at an installation are labeled.

ANSI. defines 10 types of labels. The first three characters identify the label type; the fourth character indicates
a number within the label type.

Type No. Label Name Used At Operating System Processing

VOL 1 Volume header label Beginning of volume Required

UVL 1-9 User volume label Beginning of volume Optional

HDR 1 File header label Beginning of file Required

HDR 2-9 File header label Beginning of file Optional

UHL t User header label Beginning of fIle Optional

EOF 1 End-of-fIle label End of file Required

EOF 2-9 End-of-file label End of fIle Optional

EOV 1 End-of-volume label End of volume Required when appropriate

EOV 2-9 End-of-volume label End of volume Optional

UTL t User trailer label End of me Optional

t Any member of CDC 6-bit subset of ASCII character set.

Table 3-2 shows the contents and defaults, of label fields. All required labels are checked by the operating I
system on input and generated by the operating system on output if the user does not supply them. The user
must supply all optional labels to the 'operating system. Optional ANSI label types are accepted for reading or
writing when extended label processing capabilities are requested through the XL bit of the fIle environment
table, as explained in section 5. However, all manipulating of such labels must be done by user code. The
NS parameter of REQUEST or LABEL inh:ibits operating system processing of labels on S or L tape.

60493800 C 3-33

I TABLE 3-2~ ANSI STANDARD TAPE LABEL FORMATS

Character
Field

ANSI Name
Length Contents

Default Checked
Position (NOS/BE 1 Name) Written On Input

1-3 1 Label Identifier 3 VOL VOL Yes

4 2 label Number 1 1 1 Yes
5-10 3 Volume Serial 6 Any a As typed from Yes if file

Number characters console assigned
Volume byVSN
Header
label 11 4 Accessibility 1 Space Space No

12-31 5 Reserved 20 Spaces Spaces No

32-37 6 Reserved 6 Spaces Spaces No

38-51 7 Owner 10 14 Any a characters Spaces No
52-79 8 Reserved 28 Spaces Spaces No

80 9 label Standard 1
1 1

No
level

1-3 1 label Identifier 3 HDR HDR Yes

4 2 label Number 1 1 1 Yes

5-21 3 File Identifier 17 Any a Spaces Yes
(File label characters

Name)

22-27 4 Set Identification 6 Any a Volume Serial No
(Multi-File Set characters Number of

Name) first volume of set

28-31 5 File Section 4 4 n characters 0001 Yes
Number indicating number

(Volume Number) of volume in

First file

File 32-35 6 File Sequence 4 4 n characters 0001 Yes

Header Number indicating num-

label (Position ber of file in
Number) multi-file set

36-39 7 Generation 4 Spaces No
Number

Not used

40-41 8 Generation 2 2 n characters 00 Yes
Version Number indicating the

(Edition Number) edition of file

42-47 9 Creation Date 6 Space followed Current date Yes
by 2 n charac- is used
ters for year, 3
n characters for

day

48-53 10 Expiration Date 6 Same as field 9 Same as field 9 Yes

54 11 Accessibility 1 Any a characters Space No

55-60 12 Block Count 6 Zeros Zeros Yes

61-73 13 System Code 13 Any a characters Spaces No

74-80 14 Reserved 7 Spaces Spaces No

3-34 60493800C

TABLE 3-2. ANSI STANDARD TAPE LABEL FORMATS (Contd) I

Character
Field ANSI Name Length Contents

Default Checked
Position (NOS/BE 1 Name) Written On Input

Additional
1-3 1 Label Identifier 3 HDR HDR Yes

File Header 4 2 Label Number 1 2-9 2-9 Yes

Labels All other fields are not checked on input; they are written as received from user.

1-3 1 Label Identifier 3 EOF EOF Yes

4 2 Label Number 1 1 1 Yes

5-54 3-11 Same as corres-
ponding HDR1

First label fields

End-of- 55-60 12 Block Count 6 6 n characters; Yes
File Label number of data

blocks since
last HD R label

group

61-80 13-14 Same as corres-
ponding HDR1

label fields

Additional 1-3 1 Label Identifier 3 EOF EOF Yes

End-of-File 4 2 Label Number 1 2-9 2-9 Yes
Labels All other fields are not checked on input; they are written as received from user.

First 1-3 1 Label Identifier 3 EOV EOV Yes

End-of-Volume 4 2 Label Number 1 1 1 Yes
Label All other fields are identical to EOF1 label.

Additional 1-3 1 Label Identifier 3 EOV EOV Yes

End-of- 4 2 Label Number 1 2-9 2-9 Yes
Volume

All other fields are not checked on input; they are written as received from user.
Labels

USER
1-3 1 Label Identifier 3 3 letter code: UVL, UHL, or UTL Yes

Labels 4-80 Any a characters. Content of these fields is not checked on input;
content is written as received from the user.

a any character
n any digit

60493800 C 3-35

STANDARD LABELED TAPE STRUCTURE

The four ANSI labels required are used as follows. Tape marks separating items are completely system
controlled.

VOL I

HDRI

EOFI

EOVI

Must be the first label on a labeled tape volume. This label contains the volume serial
number which uniquely identifies the volume.

Required label before each file or continuation of a ftle on another volume. It is
preceded by a VOLI label or tape mark. Each file must have a HDRI label which
specifies an actual position number for multi-ftle sets.

Terminating label for ftle defined by HDRI label; the EOFI label marks the end-of­
information for the file. A single tape mark precedes EOFI. A double tape mark
written after the EOFI label marks the end of a multi-file set.

Required only if physical end-of-tape reflector is encountered before an EOFI is
written or if· a multi-file set is continued on another volume. It is preceded by a
single tape mark and followed by a double tape mark.

The structure of SI tapes that results from these required labels is shown below. The label identifier and num­
ber is used to denote the entire 80-character label in these figures.

Single volume ftle:

Load Point End-of-Tape Reflector

VOL1 HDR1 * FILEA • EOF1 • •

'-v-'"
Double Tape Mark

Multi-reel file:

\ . \ F~A ~ \.\ *\.\ VOL1 HDR1 EOV1

~

1·1
f\J

I ·1 I I
f?4A

I VOL1 HDR1 FILE A (Continued) EOFl • *
twA --'V

3-36 60493800 A

Multi-file volume structure that results from a request for a multi-fIle set 'is:

VOL1 HDR1 * FILE A * EOF1 * HDR1 .* FILE B * EOF1 * *

Multi-file multi-volume sets are also possible. Tape label configuration that occurs when EOFI coincides with
end-of-volume is defined in the ANSI standard.

LABELED MULTI-FI LE SETS

A multi-file set consists of one or more files on one or more volumes of tape. Individual fIles can be accessed
by name, even though their order is not known.

Labeled multi-file sets require the use of both REQUEST and LABEL statements. (LABEL statements are not
required if the program can gen~rate these fieldsintemally.) REQUEST specifies the tape characteristics;
LABEL produces the file header for individual files. LABEL must specify the set name as the M parameter.
This set name is limited to six characters and must be different from any local file name. The utility routine,
llSTMF, is available to list the labels of all files in an existing set. LABEL can be used to position within a
set when a position number is used in the parameter list.

To create a labeled multi-file set, the following parameters should be used (parameters after the first can appear
in any order). The label type must be U.

REQUEST(mfn,MF,U,RING, ...),

LABELUfn1,M=mfn,W, ...)

LABELUfn2,M=mfn,W, ...)

Program call to create lfn 1
Program call to create lfn2

The mfn parameter is the name of the multi-file set, 1-6 letters and digits beginning with a letter. This param­
eter associates the file with a particular set: all files in the set must reference it. Also, mfn cannot be used in
any I/O request except as the M parameter in LABEL or POSMF requests.

RING/NO RING parameters on REQUEST for the multi-file set determines the RING status for all processing
of that set. RING/NO RING parameters are ignored on LABEL used to position a multi-file set.

On REQUEST, the MF parameter designates the first parameter to be a multi-file name rather than a logical
me name. The U pa.rameter causes standard labels to be produced. Other parameters should establish tape
density and format for the entire multi-file set. On LABEL, density and format parameters are ignored.
REQUEST can include a VSN parameter.

LABEL is recommended for each me. In addition to required lfn and M parameters, optional parameters
describing file header fields can appear. If a position number is not given with the P parameter, it is assumed
to be one larger than that of the previous me; and the new file is written at the end of the current set.
When an L parameter is used in creating afue header, future jobs can access the file by label name.

To access a labeled multi-fue set, a REQUEST control statement is needed to attach the set to the job. A
LABEL control statement (either U or Z) need appear only for the fue to be accessed. For example, to
access the third me on a volume:

·60493800 A 3-37

REQUEST(MANY,MF,U,NORING •••)

LABEL(FILE3,R,M=MANY,P=3, ...)

When an R is specified on a LABEL statement, the set is positioned according to the P parameter, an OPEN
function is issued to read the label, and the contents are checked against any corresponding parameters on the
LABEL statement. Use of L instead of P causes the tape to be searched for a matching label name. If a
match cannot be found, a message, FILE NAME NOT IN MULTI-FILE SET, is issued and processing stops.
The same message appears also when neither P nor L is given and' the end of the device set is encountered.
When R is not specified, the next fIle in the set is opened when P and L are both omitted.

Writing on a multi-fIle can be done at the end of the existing set; or at some point prior to the end, existing
files can be overwritten. For example, to create a new file LASTONE: .

LABEL(LASTONE,W,M=MYSET,L=LAST)

Since P is omitted, the label is written at the end of existing fIles and given a position one greater than
the last fIle.

If a position number is given when a label is to be written, the fIle is positioned as requested. If a label
exists at that point, its expiration date is checked. A new label is not written over the existing one unless it
is expired or the operator authorizes writing over an unexpired label. Since rewrite-in-place is not defined for
tapes, rewriting a fIle label destroys access to the associated fIle and all files following it on the tape.

The assignment of a multi-file can proceed automatically with the use of a VSN under the following conditions:

A VSN statement or parameter equates the multi-file name to the physical volume of tape.

VSN(mfname=1234) or REQUEST(mfn, •.••• ,VSN=1234)

A REQUEST statement is used to assign the multi-file name to the job.

REQUEST(mfname,MF)

A LABEL statement is used to identify the specific file by label name, equate the file to the logical file
name, and identify the file as being a multi-fIle set member.

LABELUfn,M=mfname,L=lfn, •.•.•••.)

Once the multi-fue name has been assigned to the job via the REQUEST statement, any file can be accessed
individually via the LABEL statement. The execution of a new LABEL statement automatically, prevents the
preceding labeled file from being accessed.

USAGE SUMMARY

Magnetic tape files to be used or created by a job must be explicitly requested. Three control statements are
involved: REQUEST, LABEL, and VSN.

The REQUEST statement can be used for all tape files - labeled, unlabeled, single file, or multi-file set.
Parameters, in addition to specifying format and density, can specify processing for the file. Identifying the

3-38 60493800 A

tape as input or output and the type of label is sufficient to initiate label processing and checking when the
me is opened. The installation default options for unloading, label processing, and parity error processing can
be overridden. A volume serial number parameter for the volume (or first volume in multi-volume file) allows
the system to assign the me automatically.

The LABEL statement can be used in place of a REQUEST statement for a labeled, single file volume and to
write or check me header labels on single or multi-file volumes. Parameters establish label type and whether
labels are to be read or written. Fields in file header (HDRl) labels are written or checked according to the
values specified. If a multi-fIle volume is to be labeled, a REQUEST statement must first establish the
multi-me name, then a LABEL statement can exist with the name and label field values for each file in the
set. With LABEL, either a volume serial number or a label name can be given for identification for automatic
tape assignment purposes. Automatic assignment by label name applies only when the read (R) parameter is
specified by LABEL. The LABEL statement also can be used to position to a particular member of a multi­
me set.

A LABEL statement can follow a REQUEST statement for the same file. Conflicts in parameters are resolved
in favor of the REQUEST statement. Unresolvable conflicts are referred to the operator.

The VSN statement can be used to equate a file name with a volume serial number so that the system can
assign a mounted tape automatically when it is requested by a REQUEST or LABEL statement or function.
The VSN for multi-fIle set or for alternate volumes can be stated. Since the system accepts the first VSN
equated to a me name, a VSN preceding a REQUEST or LABEL statement overrides any VSN value or
supplies the omitted parameter. This VSN information is independent of label information. It is not written
or checked against label fields.

Automatic tape assigning capabilities, which are selectable by installation options, speed job throughput when
the programmer supplies information to allow assignment of mounted tapes without operator action. The
system searches first for an eq parameter, then a VSN parameter, then a label name from among the control
statements. If both the VSN and label name parameters are specified, only the VSN is used for automatic
assignment. However, label verification proceeds separately and inconsistencies are brought to the attention of
the operator for action. The operator has the option of assigning a VSN to a tape when it enters the system
if such identification was not made by the programmer.

Only the VSN statement allows multi-volume file identifiers or alternate tape volumes to be specified. Use of
the VSN statement is recommended when a job's tape file requirements change frequently.

If more than one VSN parameter is given for a single file, the first encountered is accepted. Therefore,
deliberate duplication provides the programmer with the ability to override, for example, a REQUEST function
specification within a program without changing the program.

The maximum number of tape drives a job uses at any time is specified by the MT (7-track) and NT (9-track)
tape parameters on the job statement. Specifying more tapes than are needed can delay execution of a job.
The greatest delay results from specifying a number of tapes when the job does not use any tapes. Specifying
fewer tapes than needed causes the job to abort.

60493800 A 3-39

PRINT FILES

Print files are those with a disposition code indicating printer output. The file OUTPUT always is a print file.

Print files must have these characteristics:

1. Characters must be in 6-bit display code (IC=DIS) or 8-bit ASCII (IC=ASCII). IC is declared with the
ROUTE control statement or macro. Default is DIS. Files to be printed with an extended print train
(more than 64-character character set) must be in ASCII.

2. The end of a print line must be indicated by a zero byte in the lower 12 bits of the last central
memory word of the line. Any other unused characters in the last word should be filled with binary
zeros. For example, if the line has 137 characters (including the carriage control character), the last
word would be aabbccddeeffggOOOOOO in octal; the letters represent the last seven characters to be
printed in the line. No line should be longer than 137 characters.

3. Each line must start at the high order end of a central memory word.

4. The first character of a line is the carriage control, which specifies spacing as shown in the following
table. It is never printed, and the second character in the line appears in the first position. A maximum
of 137 characters can be specified for a line, but 136 is the number of characters that is printed.

3-40

Table 3-4 shows carriage control characters.

When the following characters are used for carriage control, no printing takes place. The remainder of
the line is ignored.

Q Clear auto page eject (JANUS default)

R Select auto page eject

S Clear 8 vertical1ines per inch

T Select 8 vertical lines per inch

PM(coll-2) Output remainder of line (up to 30 characters) on the B display and the dayfile
and wait for the JANUS typein /OKuu

v Specifies a new carriage control array to be loaded for a 580 printer

The remaining carriage control characters do not inhibit printing. Only the carriage control character
is not printed. Any pre-print skip operation of 1, 2, or 3 lines that follows a post-print skip operation
is reduced to 0, 1, or 2 lines.

The functions Sand T should be given at the top of a page. In other positions Sand T can cause
spacing to be different from the stated spacing. Q and R need not be given at the top of a page as
each causes a page eject before performing its functions.

60493800 C

The V function can be used when assigning output to a 580 printer with programmable format control (PFC). A PFC
printer does not use carriage control format tapes; instead, it contains a microprocessor plus memory. PFC arrays
are loaded into this memory, performing the same function as the format tape. System defined arrays are available for
use (see the ROUTE control statement in section 4); however, the V function allows a user-specified array to be used.
When V is the first character of the line, 6,8, or C may be specified as the second character. Other characters invalidate
the function. If the second character is 6, 6-line per inch spacing is indicated. If the second character is 8 or C, 8-line
per inch spacing is indicated. An 8 means that the entire array is contained on one line, and a C means that two lines
are used. When two lines are used, both lines must begin with the characters VC. The data starting in column 3 defines
the format array to be used in subsequent printing. The alphabetic characters A through L, the letter 0, and blanks
may be specified to indicate the following.

An A indicates a top of forms code. The array must begin with an A.

Letters B through K specify channels 2 through 11, respectively. Other carriage control characters
contained in table 3-3 are used to skip to these channels; therefore, each of these letters should
be specified at least once in the array.

An L indicates a bottom of forms code.

The letter 0 indicates the end of the array and must be specified as the last character in the array.
It does not, however, correspond to any line on the form.

Any other characters are illegal and invalidate the array.

A maximum of 132 characters plus the end of array terminator is allowed in a 6-line per inch array, and a maximum of
176 characters plus the end of array terminator is allowed in an 8-line per inch array. An array may be less than the
maximum length since the printer loops on what is specified, even if it is not a full page.

NOTE

Specifying a V (with 6, 8, or C) does not imply that 6- or 8-line per inch mode will be
selected. If the user desires to change this mode, the S or T. carriage controls must be
used. If an array is indicated in a mode other than that previously specified by the SorT
carriage controls, the array is ignored until the S or T carriage controls are used to change
that mode.

If the V carriage control is specified and the printer is not a PFC printer, the printer page ejects and does not print
the line(s).

60493800 C 3-41 •

The following examples illustrate typic3! carriage control output and its effect. In each example, the characters
begin in column 1.

1. V6A BCD EFGmJ 0

This causes the 6-line per inch buffer to be loaded with a 20-line array, implying a 20-line form.

2. V8ABCDEFGHUO

This causes the 8-line per inch buffer to be loaded with a 10-line array, implying a 1 O-line· form.

3. VCA B DC
VC E F G H I J 0

This causes the 8-line per inch buffer to be loaded with a 21-line array, A B D C E F G H I J 0, implying a
21-line form.

4. V6BCDO

This is invalid; it does not begin with anA.

5. VBACDEO

This is invalid; a 6,8, or C is not the second character.

6. V8ABWCO

This is invalid; it contains an illegal character .

• 3-42 60493800 C

TABLE 3-3. CARRIAGE CONTROL CHARACTERS I

Character Action Before Printing Action After Printing

A Space 1 Skip to top of next paget
B Space 1 Skip to last line of paget
C Space 1 Skip to channel 6
D Space 1 Skip to channel 5
E Space 1 Skip to channel 4
F Space 1 Skip to channel 3
G Space I Skip to channel 2
H Space 1 Skip to channel 11
I Space 1 Skip to channel 7
J Space 1 Skip to channel 8
K Space 1 Skip to channel 9
L Space 1 Skip to channel 10
1 Skip to top of next page t No space
2 Skip to last line on page No space
3 Skip to channel 6 No space
4 Skip to channel 5 No space
5 Skip to channel 4 No space
6 Skip to channel 3 No space
7 Skip to channel 2 No space
8 Skip to channel 11 No space
9 Skip to channel 7 No space
X Skip to channel 8 No space
y Skip to channel 9 No space
Z Skip to channel 10 No space
+ No space No space
O(zero) Sapce 2 No space
-(minus) Space 3 No space
blank Space 1 No space

tThe top of a page is indicated by a punch in channell of the carriage control tape. The
bottom of page is channel 7.

60493800 C 3-43

JOB CONTROL STATEMENTS 4

This section describes the control statements applicable to program_ execution and file manipulation. Utilities
are also presented. The first statement described is the job statement that begins the job. Remaining control
statements are in alphabetical order.

In the formats that follow, uppercase letters indicate constants and lowercase letters indicate values to be
supplied by the user. Equal signs and slashes are required where they are shown within a parameter field.

CONTROL STATEMENT SYNTAX

All control statements, except the job statement that begins a job, have the same general format. They begin with a
verb and are followed by parameters separated by separator characters. A terminator must follow the last parameter
or the verb when no parameters are given. Blanks within the parameter list are ignored.

Verbs

Separators

Parameters

Terminators

1-7 letters or digits that indicate the operation to be performed. Leading blanks can
appear before the verb. The first character must be a letter. A blank immediately I
following the verb serves as a separator.

A separator is any character with a display code value greater than 44B, except I
*) . $ and blank. (A blank can be used to separate the verb from the first param­
eter.) The comma and left parenthesis are preferred separators. See appendix A for
display code values.

Parameter format and order depends on the individual control statements, as
described below. Some parameters have more than one field; fields within param­
eters are separated by = / or commas.

If a parameter field includes characters other than letters, digits, or asterisks, it must
be written as a literal. A literal is a character string delimited by dollar signs. Blanks
within the literal are significant. If the literal is to contain the character $, two
consecutive dollar signs must be written. The literal $A B$$41 $ is interpreted as a B$41.

Terminators are the characters period and right parenthesis;

Any characters after the terminator are treated as a comment. They appear on the job dayfile when the con­
trol statement is listed.

Certain control statements can be continued on one or more cards or lines. These statements are specifically
noted in the following descriptions. (Refer to the appropriate product reference manual to determine which
system programs allow continued control statements.) In general, the last nonblank character of the card or
line to be continued must be a sepa~ator; the verb and parameter fields cannot be split between cards or
lines-. The final card or line must contain a terminator.

6D493800 D 4-1

NOTE

In a system using the 64-character set, colons should not
be used in a control statement except within a literal. (A
single colon is permitted in a literal.) Two or more consec­
utive colons could give incorrect results because the operat­
ing system uses 12 zero-bits (equivalent to two consecutive
colons) to signify the end of a control statement.

Control statement interpretation is described in section 6.

JOB STATEMENT

A job is identified, certain resources are requested and processing priority levels are established with the job
statement. In addition, the installation might require accounting information on this statement. The first
statement in a job deck or in a file to be submitted for batch execution must be the job statement. Any
other statement in this position is presumed to have job statement parameters and is interpreted accordingly.

One parameter, the job name, is required on all job statements. Other parameters can be included to specify
resources, priority levels, or processing time limitations. If these parameters are omitted, the operating system
automatically assigns the system default values established when the operating system was installed. Parameters
can be listed ill any order following the job name.

All blanks and any unknown parameters that appear on the job statement are ignored. However, when
improper characters are used as variables with valid parameters, the job is terminated. For example, parameters
such as CM7FFF and DATA would cause job termination since CM must be followed by digits only and D
followed by two letters and one or two digits.

All numbers on job statements are presumed to be octal values, unless changed by the system analyst when· the
operating system is installed at the user's installation.

The format of the job statement is:

4-2

xxxxx, Tt,IOt,CMfl,ECfl,Pp, Dym,MTk,NTk,CPp,STmmf.

After the terminator following the last parameter, general comments or installation defined material, such
as accounting information, can appear.

xxxxx Name the user assigns to the job to identify it to the operating system. Any combina­
tion ·of digits or letters can be used; the first character must be a letter. A name
longer than five characters is truncated to five.

The operating system modifies the name of every job by assigning letters and digits
that differ for each job as the sixth and seventh characters. This ensures unique
identification if a job is entered with a name duplicating that of another job already
in process. For example, if two jobs are named JOBNAME, one might be processed
as JOBNA23 and the other as JOBNA34. If a job name contains fewer than five
characters, all unused characters through the fifth are filled with zeros before unique
sixth and seventh characters are added.

60493800 D

Tt

lOt

60493800 D

t is an octal value for the time, in seconds, which the user estimates his job requires
the central processor. It must include the time required for assembly or compilation;
it does not include time during which the job is in the input queue or in central
memory but not using the central processor. If the job access to the central proc.essor
exceeds the value specified by t , the job is terminated abnormally. (Use of the
RECOVR feature in a program allows results of execution to that point to be
recovered before termination).

t cannot e~eed five digits. An infinite time can be specified by 77777 or 0; the job
proceeds until completed even if it exceeds the installation maximum value for t.
An infinite time limit should not be used indiscriminately as certain kinds of program
errors, such as an infinite loop, can result in great waste in such· cases.

t is an octal· value for the time, in seconds, which the user estimates his job requires
for input/output. Although t cannot exceed five digits, an infinite time limit can be
specified by O. The default limit is infinite but can be changed by the installation. If
the job input/output time exceeds the value specified by t, the job is terminated
prematurely. (Use of the RECOVR feature in a program allows results of execution to
that point to be recovered before termination.)

4-2.1 /4-2.2

CMfl

ECfl

Pp

Dym

MTk
NTk

60493800 A

fl is the maximum field length (octal number of central memory words) that the job
requires.

When the CM parameter is specified, that amount of storage is allocated to the job
throughout execution, unless the job itself requests a smaller amount by a REDUCE or
RFL statement. If the CM parameter is not used, the system establishes field length
requirements for each step of the job, expanding or contracting it as necessary. Since
smaller field lengths are used whenever possible, more jobs can pass through the system
in a given time period.

The system library programs, including the loader, compilers, and utilities, have an
associated field length in the library tables. The field lengths are set by the installation
to a judicious length for typical jobs, which should eliminate the need for the CM
parameter on many job statements.

Any CM parameter on the job statement is rounded upward to a multiple of 100. The
highest permissible value is defined by the installation for a given mainframe. An RFL
control statement requesting a field length greater than the CM value on the job state­
ment causes job termination. The RFL limit is the installation field length maximum if
CM is not on the job statement.

fl is the maximum amount (octal) of direct access ECS the job needs in multiples of
1000-word blocks. The highest value permitted is defined by the installation. An
installation default amount (typically zero) is assigned if the parameter is omitted; and
subsequent MEMORY requests from user programs are not allowed to exceed that
amount.

The EC parameter is applicable only to user programs in which ECS is accessed through
hardware block store instructions. It is not applicable to files stored on ECS or buffered
through ECS.

P is the priority level (octal) requested for a job. The lowest executable priority level
is 1. If zero is given for p, the system treats it as level 1. The installation determines
the highest value permitted, but it never can exceed 7777 (octal). A value greater than
the highest permitted value defaults to the installation default.

This parameter is used only in conjunction with a string of interdependent jobs. y is
the dependency identifier (two alphabetic characters) assigned by the user to the entire
string. m is the dependency count (number) of jobs (0-77 octal) upon which this
particular job depends. Examples using the D parameter are presented in the discussion
of the TRANSF statement.

MT specifies 7-track tape and NT 9-track. If both 7- and 9-track tapes are used, MTk
and NTk should both be noted. The installation determines whether this parameter is
necessary.

k is the maximum number of 7 -track or 9-track tape units a job will require at any
one time. k can range from 0 to 77 (octal), but cannot exceed the total number of
tape units at the computer site. If more tape units are required at any time during job
execution than are specified by k, the job will be terminated.,

4-3

CPp

STmmf

A job can use more than a total k tape units as long as their use is not simultaneous.
For example, if k is 3 and 7-track tape units A, B, and C are assigned to the job, and
an UNLOAD, but not a RETURN function is issued for the tape unit C, tape unit D
can be requested for the job. This makes a total of 4 tape units used during the entire
job.

This optional parameter is applicable only to systems having more than one central
processor. Use of the CP parameter restricts the job to executing only on the specified
processor. Omission of the parameter allows the system to select the processor for job
execution; and, usually, both processors will be used during the execution of any program.
p can be A or B.

On a CDC CYBER 174, CYBER 71-2x, 72-2x, CYBER 73-2x, or 6500 system, the param­
eter restricts job execution to one of the two identical central processors. In general, such
a restriction serves no benefit. It is useful, however, for running CPU diagnostic programs.

On a CDC CYBER 74-2x or 6700 system, the two processors operate at different speeds.
CPA restricts the job to the faster processor; CPB restricts it to the slower processor.
When the parameter is omitted, the system chooses the faster processor when it is
available.

This optional parameter specifies a three- character identifier (mmf) of the system on
which the job is to be run. For multi-mainframe environments, ST should be used to
ensure that a string of interdependent jobs is executed in the same mainframe.

Examples of job statements:

J2,T400,CM4S000,EC2,Pl,DAB3,MTS,CPA. THIS IS JOB 2 IN STRING B3

THIS JOB CARD GIVES ALL DEFAULT VALUES AND JOB NAME THISJ.

OSCAR. COBOL V4 USED

S3R2,MTl. FIRST RUN.

ABS (ABSOLUTE CENTRAL MEMORY DUMP)

ABS dumps absolute addresses of central memory whether or not the addresses are within the field length
assigned to the job. Both the DMP control statement and ABS can be used for an absolute dump, but DMP
is limited to the first 131 K of memory.

The format of ABS is:

4-4

ABS, fwm, thru.

When only one parameter appears, it is presumed to be the thru parameter and the dump starts at
address O. When both parameters are present, thru must be greater than first.

60493800 n

from Address at which dump is to begin~ 1-6 digits octal.

thm Address at which dump is to end~ 1-6 digits octal. If the value exceeds the size of
memory, dumping stops at the end of memory.

The format of the output on file OUTPUT is the same as that produced by the DMP control statement. ABS
can· also be called using the SYSTEM macro described in section 6.

ACCOUNT (ACCOUNTING INFORMATION)

ACCOUNT supplies accounting information. 'The installation determines what accounting information is
required and what can be optionally specified. Depending on the installation~ the ACCOUNT control statement
might be required immediately after the job statement; it might be allowed or disallowed elsewhere among
the control statements.

The format of ACCOUNT is:

ACCOUNT, parameter ·1ist.

The dayftle message indicating the execution of ACCOUNT might be edited so that sensitive information is
deleted. megal accounting information might cause job termination.

Some installations require accounting information on the job statement instead of the ACCOUNT control
statement. Others might not require any such accounting.

ADDSET (ADD DEVICE TO DEVICE SET)

ADDSET adds members to a device set. It can be used to create a master device when parameters MP and VSN
indicate the same volume serial number. Members being added must have the same device type as the master device
(see LABELMS). ADDSET cannot be entered through INTERCOM.

A member device is added to an existing device set when parameters MP and VSN specify different volume
serial numbers. A MOUNT statement for the master device must be issued before ADDSET can be used to
add a member device.

The format of ADDSET is:

ADDSET ,MP=vsn, VSN=vsn, SN=setname, NF=n, NM=m, RP=ddd, *PF, *Q~mode.

Parameters MP, VSN, SN are required; all others are optional. All parameters are order independent.

MP=vsn

VSN=vsn

SN=setname

60493800 C

Volume serial number of master device; 1-6 letters or digits, leading zeros assumed.
Required.

Volume serial number of device being added; 1-6 letters or digits, leading zeros assumed.
Required.

Name of device set created or device set to which a member is added; 1-7 letters or
digits beginning with a letter. Required.

4-5

I

NF=n

NM=m

RP=ddd

*PF

*Q

mode

Maximum number of permanent or queue mes that can exist on the device set. Value
of n cannot be less than one nor greater than 16000.

NF=n has meaning only for an ADDSET for a master device. Default is 300 (octal).

Maximum number (decimal) of members allowed in the device set. NM=m is used by
ADDSET to preallocate on the master device system tables for the member devices.
For each member RBR, the system needs one PRU if the RBR is less than 62 words
long, or two PRUs otherwise. For system tables ADDSET reserves a number of PRUs
equal to twice NM. If each member device is to have several RBRs, NM=m should be
specified as somewhat larger than the actual number of member devices. NM=m has
meaning only for an ADDSET of a master device. Default is 50 (decimal).

Retention period for the device set. ddd must be decimal (0 to 999) indicating the
number of days before the device set expires. 999 indicates an infinite retention period.
RP=ddd has meaning only for an ADDSET of a master device. Default is 31 days.

Permanent mes can reside on this member of the device set. Although the master
device need not be a permanent file device, at least one device in the device set must
be a permanent file device.

Queue mes can reside on the member device being added to the device set if
it is a member of the public queue set. /'

Recording mode for an 844 disk pack. Default is defined at installation time.
HT Half tracking
FT Full tracking

ALTER (CHANGE PERMANENT FILE LENGTH)

ALTER changes the end-of-information for an attached permanent fIle. End-of-information is set at the end
of the PRU at which the file is currently pOSitioned. ALTER is identical to the EXTEND control statement
when new information has been written to the me and the current fIle position is at the end of the new
information.

ALTER requires exclusive access to the fIle; an RW=O parameter on the ATTACH control statement provides
exclusive access. The permissions required depend on whether the me is being lengthened or shortened:

Extend permission is required to extend the me length;

Modify and extend permission are required to reduce the file length.

The format of ALTER is:

ALTER,lfn.

lfn

4-6

Logical file name of attached permanent file, 1-7 letters or digits beginning with a
letter.

60493800 D

ATTACH (ATTACH PERMANENT FILE TO JOB)

ATTACH attaches a permanent file to a job, as long as parameters specified on the ATTACH control statement
establish the right to use the file. Subsequent operations allowed on the file depend on the passwords sub­
mitted: turnkey, read, modify, extend, or control permission is granted only when the appropriate passwords
are specified. In a multi-mainframe environment, the permanent file must reside on a device directly connected
to the mainframe on which the job is executing.

When the file is attached to the job, its initial position is beginning-of-information.

The format of ATTACH is:

ATTACH,lfn, pfn, ID=name, AC=act,CY=cy, EC=ec, LC=n,MR=m,PW =pw,RW=p,SN=setname.

The first parameter establishes the logical file name. Parameters lfn and pfn are required in the order
shown; all others are optional and order independent. ATTACH can be continued: if a period or right
parenthesis does not appear at the end of the parameter list, column 1 of the next statement is con­
sidered to be a continuation of column 80.

lfn

pfn

ID=name

AC=act

CY=cy

EC=ec

LC=n

MR=m

PW=pw

60493800 C

Name by which file is to be known as a local file, 1-7 letters and digits beginning with
a letter. If omitted or null, the first seven characters of the pfn establish lfn.

Permanent file name by which the file is known in the permanent file manager tables,
1-40 letters or digits. If omitted, lfn must be the same as the permanent file name.

ID parameter by which the file was cataloged. Required unless the file was cataloged
with ID=PUBLIC.

Account parameter, 1-9 letters or digits.

Cycle number to be attached; 1-999. Default is highest existing numbered cycle.

Size of buffer for sequential public device set file (octal). EC is ignored when SN is specified.

Installation standard number of blocks of ECS.
Number of 1000 (octal) word blocks to be allocated.
Same as EC=nnnn.

EC=K
EC=nnnn
EC=nnnnK
EC=nnnnP Number of ECS pages, with a page 1 000 (octal) central memory words.

Lowest cycle indicator; n must be any non-zero value. CY overrides LC except when CY=O.

Read-only permission request; any single nonzero digit.

1-5 passwords, separated by commas, for permissions required in this job. Passwords
are defined by the CN, TK, RD, MD, EX parameters of the CATALOG control
statement.

4-7

I

RW=p

SN=setname

Rewrite request

o

nonzero
digit

Job has exclusive file access if it has control, modify, ·or extend
permission.

Job retains modify and extend permission; any control permission is
cancelled. Other jobs can attach the file with MR=1 to read the file,
but cannot receive control permission.

Name of set on which file is cataloged, 1-7 letters or digits beginning with a letter.
The master device of a private device set must be referenced on a MOUNT control
statement before SN is used. If omitted the job's current permanent file default set
is assumed (see SETNAME).

An ATTACH of an incomplete cycle must specify CY and any control password.

AUDIT (PERMANENT FILE SUMMARY)

AUDIT provides the status of permanent files. The user can restrict the AUDIT to an owner 10, permanent
file name, or device set.

AUDIT can run in either full mode or partial mode. Items contained in the printed reports of each of these
modes are listed in table 4-1.

The format of AUDIT is:

4-8

{
AI=F} AUDIT,LF=lfn,MO=m,ID=name,PF=pfn, AI=P , SN=setname,VSN=vsn,AC=n.

All parameters are optional and order independent. If a terminator does not appear at the end of the param­
eter list, column I of the next card or line is considered to be a continuation of the AUDIT parameter list.

LF=lfIl

MO=m

ID=name

PF=pfn

AI=F

Logical file name to receive the output listing created by AUDIT, 1-7 letters or digits
beginning with a letter. Default is OUTPUT.

AUDIT mode; only one of the following modes can be specified:

A

X

o

P

R

AUDIT all files (default)

AUDIT expired mes

AUDIT inactive cycles

AUDIT incomplete flIes

AUDIT files with parity errors

AUDIT archived flIes

Owner identification; audit all files with this identification.

Permanent file name; audit all fIles with pfn. If PF=pfn is used, the ID=name param­
eter must also be used.

Full two-line output for each fIle audited. Default.

60493800 0

AI=P Partial one-line output for each file audited.

SN=setname Name of device set to be audited, 1-7 letters or digits beginning with a l~tter. Master
device for this device must have been previously mounted.

VSN=vsn Volume serial number of device to be audited, 1-6 digits or letters beginning with
a letter. All files residing on this device are audited. Master device for this device set
must have been previously mounted. SN=setname parameter must also be specified.

- .
AC=n Account number; audit all files with this 1-9 character account number.

TABLE 4-1. ITEMS LISTED BY AUDIT

All Archived Expired Files of Files on Partial Full Audit Specified Files Files Files Same ID Device Audit or Account

Account Parameter X X X X X X X

Creation Date (ordinal) X X X X X X X

Cycle Number X X X X X X X

Date of Last Alteration (optional) X X X X X X X

Date of Last Attach (optional) X X X X X X X

Expiration Date (optional) X X X X X X X

Flagst X X X X X X

Length Number of PRUs deter- X
mined by Installation Parameter X X X X X X

Length in RBs X X X X X

Number of Attaches X X X X X X

Number of Extends X X X X X X

Number of Rewrites/Alters X X X X X X

Owner ID X X X X X X X

Permanent File Name X X X X X X X

Set Name X X X X X X X

Subdirectory Number X X X X X X

Time of Last Alteration X X X X X X

Time of Last Attach X X X X X X

First VSN X X X X X X X

VSN of Dump Tapes (first/last) X X X X X X

tFlags are:

A Archived file E Parity error in file P Positioned file
C RB conflict file N New version file R Random file

S CYBER Record Manager IS, DA, or AK file

60493800 A 4-9

BKSP"(BACKSPACE SYSTEM-LOGICAL-RECORD)

BKSP backspaces one or more system-logical-records on rotating mass storage, ECS, or SI format tape. Back­
spacing terminates when beginning-of-information is encountered.

The format of BKSP is:

I BKSPJfn,n,C.

I

Parameters are positional; only lfn 'is required.

lfn

n

C

Name of file to be backspaced, 1-7 letters or digits beginning with a letter.

Number of system-logical-records to be backspaced, 1-262143 (decimal). Default is 1.

File to be backspaced is coded. Default is binary.

CATALOG (CREATE PERMANENT FILE)

CAT ALOG makes an existing local file a permanent me by creating entries in permanent me manager tables.
A permanent file is known in these tables by a permanent file name unique within an owner ID. As many as
five cycles can exist with the same permanent file name and ID but different cycle numbers.

The local file must have all permissions in order for a new permanent me name and ID to be entered in the
permanent file manager tables. When the first cycle of a permanent file is created, the values for XR, EX,
CN, MD, TK, and RD define the passwords which are to be used in future references to all cycles of this
permanent- file. Consequently, these parameters are ignored for a new cycle catalog. Any control password
or turnkey password defined must be specified with the PW parameter to create a new cycle of a permanent
me.

The local file must reside on a member of a public device set or on a member of a private device set desig­
nated for permanent files. A *PF parameter on a REQUEST control statement prior to file creation ensures
proper file residence. An SN parameter on the REQUEST determines the device set for the file.

Once the file is cataloged, it remains available to the job as a local file with all permissions, unless the RW
parameter or MR parameter cancels some permissions.

The format of CATALOG is:

4-10

CATALOG,lfn,pfn,ID=name, AC=act, CY=cy, CN=cn, EX=ex, FO=fo ,MD=md,MR=m,PW=pw,RD=rd,RP=rp,
RW=p, TK=tk,XR=xL

The first two parameters are required in the order shown. All other parameters are order independent.
CATALOG can be continued: if a period or right parenthesis does not appear at the end of the
parameter list, column I of the next statement is considered a continuation of column 80.

lfn Logical file name by which file is presently known to the job, 1-7 letters or digits
beginning with a letter. If omitted, the first 7 characters of pfn are assumed. This
name does not become part of the permanent file identification.

60493800 D

pfn

ID=name

AC=act

CY=cy

CN=cn

EX=ex

FO=fo

MD=md

MR=m

PW=pw

RD=rd

RP=rp

RW=p

TK=tk

60493800 A

Permanent file name by which the file is known. in permanent file manager tables, 1-40
letters or digits. If omitted or null, Ifn becomes the permanent file name.

Owner or creator of fIle. Required unless the installation is cataloging the file with
ID=PUBLIC.

Account parameter, 1-9 letters or digits.

Cycle number of file with same pfn/ID combination,' 1-999. If omitted, illegal, or
not unique, cycle number is one greater than highest existing cycle number. If a
cycle 999 exists, automatic cycle number assignment cannot take place.

Password for control permission (purge or catalog new cycle), 1-9 letters or digits.

Password for extend permission, 1-9 letters or digits.

File is CYBER Record Manager IS, DA, or AK organization. Permissions are defined in
terms of Record Manager logic: extend is equated with adding new records, modify
with deleting or replacing records. If the fIle is not IS, DA, or AK organization, this
parameter is ignored.

Password for modify permission, 1-9 letters or digits.

Multi-read indicator

o

nonzero
digit

No other job can attach fIle while this job is in execution. Default.

Other jobs can attach me immediately for read only.

Control password. Required to catalog a new cycle of the same pfn/ID or to catalog
a file that has ID=PUBLIC.

Password for read permission, 1-9 letters or digits.

Retention period indicating the number of days file is to be retained, 0-999. Infinite
retention is 999, although an installation might change this. Default is installation
defined. Installation procedures determine the future of the file once the retention
period expires.

Rewrite request

o

nonzero
digit

Job has exclusive file access if it has control, modify, or extend
permission.

Job retains modify and extend permission; any control permission is
cancelled. Other jobs can attach the fIle with MR=1 to read the file,
but cannot receive control permission.

Password for turnkey required in addition to RD, MD, EX, or CN, 1-9 letters or digits.

4-11

XR=xr Password for modify, extend, and control permission, 1-9 letters or digits. Any MD, EX,
or CN parameter overrides XR for the specified parameter only.

When a file is cataloged with a pfn unique to the ID, these parameters are applicable:

AC,CN,CY,EX, FO,MD,MR,PW,RD, RP,RW, TK

When a new cycle is cataloged with the same pfn and ID of an existing permanent file, the new cycle has the
same set of passwords as the original file. Any control permission passwords must be specified on the
CATALOG that establishes a new cycle. These parameters are applicable to a CATALOG for a new cycle:

AC,CY, FO,MR,PW, RP, RW

Any permanent file parameter not applicable to CATALOG is ignored.

CKP (CHECKPOINT REQUEST)

CKP requests a checkpoint dump be taken during job execution. Each time a checkpoint dump is taken
during job execution, a file is written containing information needed to restart the job at that point. The
system numbers each checkpoint dump in ascending order.

The format of CKP is:

CKP.

The checkpoint/restart system facility captures the total environment of a job on magnetic tape so the job can
be restarted from a checkpoint, rather than from the beginning of the job. Total environment includes all files
associated with the job. For mass storage files, the complete file is captured, including data from any ECS
buffers and the relative position within that file. For magnetic tape files, only the relative position on the
tape is captured so the tape can be properly repositioned during restart. (See the RESTART utility.)

Checkpoint/restart cannot handle the following items:

Rolled-out jobs

Random files (except random permanent files)

Multi-file volumes

ECS resident files

The job should request a dump tape with a REQUEST or LABEL control statement that indicates the tape is to
be used for checkpoints. The tape must be SI data format and default density, but can be either 7-track or 9-track
and labeled or unlabeled. Either a 7-track or 9-track tape can be assigned by the operator when an MN parameter
appears in REQUEST. Only one tape can be defined for checkpoint dumps per job. If no tape is supplied, check­
point defines an unlabeled tape for its use at the time the checkpoint occurs with the following request statement:

REQUEST,CCCCCCC,CK,MN,RING.

Checkpoint/restart defines the following files for its use:

CCCCCCC CCCCCCI CCCCCCM CCCCCCO

4-12 60493800 A

The user should refrain from using these file names. User system-logical-records should not have a level 16,
since checkpoint uses level 16 for internal processing.

COMBINE (RECORD CONSOLIDATION)

COMBINE consolidates one or more consecutive system-logical-records in one me into one level 0 system­
logical-record on a second file. COMBINE is applicable only to files with system-logical-record structure:
files cannot be S or L tapes. COMBINE terminates at a partition boundary.

The format of COMBINE is:

COMBINE,lfnl ,lfn2, n.

Parameters IfnI and lfn 2 are required.

IfnI File from which one or more system-logical-records is read, 1-7 letters or digits
beginning with a letter.

Ifn2 File to which one system-logical-record is written, 1-7 letters or digits beginning with
a letter.

n Number (decimal) of system-logical-records in IfnI to be written onto Ifn2. Default
is 1.

The job is responsible for positioning of both fIles.

COMMENT (ADD COMMENT TO DAYFILE)

COMMENT inserts a formal comment into the job dayfile. The comment is displayed at the operator console
as part of the job dayfIle and the job continues, so the operator might not see the comment. The PAUSE
control statement should be used instead of COMMENT when the comment is to be brought to the attention
of the operator, since PAUSE stops the job until the operator acknowledges the PAUSE.

The format of COMMENT is:

COMMENT. comment

The period is required. The comment can begin in any column after the period; no ending punctuation
is required.

comment String of 72 characters. Any character can be specified, including those otherwise used
as punctuation.

Only the comment appears in the dayfile; the word COMMENT does not. The first 40 characters of the
comment, including any leading blanks, appear on the first line. Any additional characters appear on a second
line in the dayfile.

60493800 A 4-13

COMPARE (COMPARE FILES)

COMPARE compares one or more consecutive system-logical-records in one partition with the same number of
consecutive system-logical-records in a partition on another file. Comparison begins at the current position of
each file and continues until the number of system-logical-records of the specified level or higher level has
been processed from the first fue. COMPARE terminates if a partition boundary is encountered.

Files. to be compared can reside on rotating mass storage, ECS, or magnetic tape.

COMPARE can be used with an S or L tape when record size does not exceed PRU size for an SI tape.
When a tape file is to be compared with a me not on tape, the tape me must be specified first in the
COMPARE parameter list.

The format of COMPARE is:

COMPARE,lfnI,lfn2,n,lev,e,r.

Parameters IfnI and lfn2 are required; all others are optional. All parameters are order dependent.

IfnI, Ifn2

n

lev

e

r

Names of mes to be compared, 1-7 letters or digits beginning with a letter.

Number (decimal) of system-logical-records of level lev or higher in lfn 1 to be
compared to Ifn2. Default is 1.

Record level number (octal). Default is O.

Number (decimal) of non-matching word pairs to be written to. the OUTPUT file for
each non-matching record. Default is O.

Number (decimal) of non-matching records to be processed during the comparison.
Included in non-matching record OUTPUT file if the e parameter is given. Default
is 30000.

Both the contents of the record and the system-logical-record terminator must be identical for the utility to
declare both files identical. When all pairs of records are identical, COMPARE writes the message GOOD
COMPARE to the dayfue; otherwise the message is BAD COMPARE. A discrepancy between levels of .
corresponding records is listed on OUTPUT, and the comparison is abandoned, leaving the files positioned
immediately after the unlike record terminators.

A bad compare produces a message on the me OUTPUT. When the e and r parameters are specified,
information on OUTPUT can identify the non-matching records. The first record on each me is number 1.

COMPARE determines whether a tape file is binary or coded mode in the following way. File names are
those of example 4 below. The first record of the first-named fIle (GREEN) is first read in binary mode.
A redundancy check is produced; the me is backspaced and re-read in coded mode. If another redundancy
check occurs, the fact is noted in file OUTPUT, the corresponding record of the second-named me (BLACK)
is skipped over, and the process begins again. If the coded read is successful, the corresponding record of
BLACK is read in coded mode. If this record of BLACK produces a redundancy check, the fact is noted in
me OUTPUT, and nothing further is done with that record. Each record of me BLACK is read in the same

4-14 60493800 A

mode as that in which the corresponding record of GREEN was success.fully read; but if the record GREEN
was unsuccessfully read in both modes, the record of BLACK is read in the same mode as the ·preceding
record of BLACK. Once a record of GREEN has been read without redundance, following records of GREEN
are read in the same mode until a change is forced by a redundancy check.

Examples of COMPARE usage:

1. COMP ARE(RED, BLUE)

Compares next system-logical-record on file RED with next record on file BLUE.

2. COMPARE(RED,BLUE,6)

Compares next six system-logical-records. Each record level on fIle RED must have the same
level as the corresponding record on file BLUE for a good compare.

3. COMPARE(RED,BLUE,3,2)

Compares two fIles from their current positions to and including the third following end-of-section
mark having a level number of 2 or greater.

4. COMPARE(GREEN,BLACK,3,2,5, 1000)

.Comparison is the same as the previous example; but the first five discrepancies between correspond­
ing words in the fIles plus their positions in the record are listed on OUTPUT. Positions are
indicated in octal, counting the first word as O. The limit of pairs of discrepant records to be
read is 1000. If two long files are compared, for instance, 20 might be used as the record param­
eter, so that a large number of discrepancies are described in detail; but if, through an error, the
two files are completely different, an enormous and useless listing is not produced. Furthermore,
the comparison is abandoned if this limit is exceeded, and the files are left positioned where they
stand.

COpy (COpy TO END-Of-INfORMATION)

COpy copies one me onto a second fIle until a double end-of-partition (empty partition) or end-of-information
is encountered on the first fIle. If end-of-information is encountered on the first file, enough end-of-partitions
are written on the second file to ensure that it has a double end-of-partition.

Both files are backspaced past the last end-of-partition written unless a backspace is illegal on the device or
end-of-information was encountered.

The format of COpy is:

COpy ,IfnI, Ifn2.

Parameters are order dependent and optional.

IfnI

60493800 A

File to be copied onto Ifn2, 1-7 letters or digits beginning with a letter. Default is
INPUT.

4-15

Ifn2 File onto which Ifni is copied, 1-7 letters or digits beginning with a letter. Default is
OUTPUT.

COpy is intended for use with files residing on disk or on binary SI format tapes. COpy gives undefined
results when used with S or L tapes or with labeled or coded tapes.

COpy can be used with any CYBER Record Manager file that resides on a PRU device. IfnI is copied through
end-of-information or a double end-of-partition. File format is not changed; FILE control statements are

I ignored (see the CYBER Record Manager Reference Manual).

COPYBCD (COpy LINE IMAGE FILE)

COPYBCD reformats files of line images. It is used most often to produce a tape file that can be listed off­
line. Each line image of the input file is assumed to be terminated by a 12-bit byte of zeros in the low order
position of the last word of the line image. COPYBCD writes each line image as a I48-character record, with
the zero-byte line terminator converted to blanks on the output file.

When a partition boundary is encountered on the input flle, a printer carriage control character for a skip to
top of next page is written on the output file before an end-of-partition is written. Thus, the final printed
output begins each partition at the top of a new page. Stray characters appear at the top of this page as a
result of the skip and end-of-partition on the output file.

The format of any output tape is determined by the REQUEST or LABEL control statement in the job.

The format of COPYBCD is:

COPYBCD,lfnl,lfn2,n.

All parameters are positional and optional.

Ifni

Ifn2

n

Name of input file to be copied onto Ifn2, 1-7 letters or digits beginning with a letter.
Default is INPUT.

Name of output file onto which Ifni is to be copied, 1-7 letters or digits beginning with
a letter. Default is OUTPUT.

Number of partitions (decimal) to be copied, 0<n<218-1. Default is 1.

COPYBF AND COPYCF (COpy BINARY AND CODED FILES)

COPYBF and COPYCF copy binary files and coded files, respectively, to ot~r files. The minimum field
length for these routines is 5000 (octal). When L tapes are copied, the minimum is 1 000 (octal), plus twice
the length of the largest physical record to be copied.

COPYBF and COPYCF copy partitions delimited by level 17 record terminators on PRU devices (SI tapes and
mass storage) and by tape marks on Sand L tapes. Copy continues until the specified number of partitions
has been copied or end-of-information is encountered. An EOF label on a tape multi-flle set is considered to
be end-of-information. An informative message is entered in the job dayfile when the copy terminates.

4-16 60493800 C

These utilities produce a file with a specific structure. If an exact duplication of the input file is required,
COpy should be used. Alternatively, some appropriate sequence of COPYBR/COPYCR/COPYBF /COPYCF with
explicit record or fue counts, or other fue positioning utilities can be used.

The format of COPYBF is:

COPYBF ,ifnI ,lfn2, n.

All parameters are order dependent and optional.

IfnI Name of file from which information is to be copied, 1-7 letters and digits beginning
with a letter. Default is INPUT.

Ifn2 Name of file to which information is to be copied, 1-7 letters and digits beginning with
a letter. Default is OUTPUT.

n Number of partitions to be copied, O<n<218~1 (decimal).

The format of COPYCF is:

COPYCF ,Ifni ,lfn2,n.

Parameters are discussed under COPYBF.

If an end-of-information is encountered on the input file before the number of partitions specified by the n
parameter have been copied, the copy operation ceases (but not aborts) at that point. An end-of-partition is
written on Ifn2, and is not backspaced over. A dayftle message indicates the number of partitions copied
before end-of-information was encountered.

When these utility routines detect an end-of-volume for a tape, the next volume is requested, label checking/
writing is performed for labeled tapes, and the function continues normally on the next volume.

When a file with system-logical-records is copied to an S or L tape, each system-Iogical~record becomes a
physical tape block. Each level 17 record delimits a partition. Similarly, when an S or L tape is copied to
a PRU device, each physical record becomes a system-logical-record of level O. A tape mark on an S or L
tape delimits a partition. An informative message on the dayftle notes that levels I through 16 lose their
level indicator on an S or L tape.

For the record and block types indicated below, CYBER Record Manager end-of-partition (EOP) is equivalent
to a NOS/BE 1 end-of-partition. The routines ~OPYBF and COPYCF can be used to copy a specified num­
ber of partitions. All other considerations are the same as for copying system ftles.

Device Block Type Record Type

SI tapes and mass storage C F,D,R,T,U,S,Z
K F,D,R,T,U,Z

Sand L tapes C F,D,R,T,U,Z
K F,D,R,T,U,Zt
E F,D,R,T,U,Zt

t A copy from an S/L device to a system device might add extraneous system CYBER Record Manager defined
end-of-section terminators to a me.

60493800 A 4-17

Although not primarily implemented for that purpose, the$e routines are capable of limited format conversion.
Table 4-2 shows format conversion copies that can be handled successfully.

INPUT

SI Tapes and
Mass Storage

S Tape

L Tape

TABLE 4-2. COPYxx FORMAT CONVERSION

SI Tapes and Mass
Storage

Yes

Yes 3, 4, 5, 7

Yes 3,4, 5

OUTPUT

S Tape

Yes 1,5

Yes 3, 6, 7

Yes 3,6

L Tape

Yes 2,5

Yes 3, 6, 7

Yes 3, 6

1 If the system-logical-record or L tape physical record is greater than 512 words, the copy terminates
with an error message.

2 If the system-logical-record is greater than the copy buffer size, the copy terminates with an error
message.

3 If the S tape physical record is greater than 512 words or the L tape physical record is greater than
the copy buffer size, the system aborts the copy with an error message.

4 If the S or L tape record is not a multiple of 10 characters, the last word of the system-logical­
record is filled with zero bits; and an informative message is issued when the copy finishes.

5 If a 9-track coded S or L tape is used, character conversion takes place. Four 8-bit characters on
input convert to four 6-bit characters in memory. Four 6-bit characters from memory convert to
four 8-bit characters on tape. An informative message concerning this conversion is issued when the
copy finishes.

6· If a 9-track coded S or L tape is used, character conversion takes place between files; and an informa­
tive message concerning this conversion process is issued when the copy finishes.

7 The largest 9-track tape record that can be copied by COPYBR or COPYBF is 3840 8-bit characters.
A record of 5120 characters can be copied by COPYCR/COPYCF.

4-18 60493800 A

COPYBR AND COPYCR (COpy BINARY AND CODED RECORDS)

COPYBR and COPYCR copy binary logical records and coded logical records, respectively, to output files.
The minimum field length for these routines is 5000 (octal). When L tapes are copied, the minimum is 1000
(octal), plus twice the length of the largest physical record to be copied.

COPYBR and COPYCR copy physical records on S or L tapes and system-logical-records on PRU devices (SI
tapes and mass storage). Copy continues until the specified number of records has been copied or end-of­
information or end-of-partition is encountered. An EOF label on a tape multi-file set is considered to be
end-of-information. An informative message is entered in the job dayfile when the copy terminates.

These utilities produce a file with a specific structure: the last item on the output file is an end-of-partition
that the utilities write, then backspace over. If an exact duplication of the input file is required, COpy should
be used, as noted with the COPYBF and COPYCF utilities.

The format of COPYBR is:

COPYBR,lfn 1 ,lfn2,n.

Parameters are order dependent and optional.

IfnI Name of file from which information is to be copied, 1-7 letters and digits beginning
with a letter. Default is INPUT.

Ifn2 Name of m.e to which information is to be copied, 1-7 letters and digits beginning
with a letter. Default is OUTPUT.

n Number of records to be copied, 0<n<218-1 (decimal). Default is 1.

The format of COPYCR is:

COPYCR,lfnl,lfn2,n.

Parameters are discussed under COPYBR.

If an end-of-partition is encountered on the input file before the number of records specified by the n
parameter have been copied, the copy operation ceases (but not aborts) at that point. An end-of-partition is
written on the output file, but it is not backspaced over. A dayfJ.1e message indicates the number of records
copied before the partition boundary was encountered.

A formatted FORTRAN write to a PRU device can produce more than one line per logical record. When
COPYCR is used to copy the file to an S tape, the line images are not detected as separate records.

When COPYBR or COPYCR is used to copy one S or L tape to another, each tape block copied is counted
as a logical record and is converted to a system-logical-record level zero. Similarly, each system-logical-record
of an input file becomes a physical record of an S or L format output file.

When these utility routines detect an end-of-volume on a tape, the next volume is requested, label checking/
writing is performed for labeled tapes, and the function continues normally on the next volume.

60493800 A 4-19

If a partial logical record (a record not terminated with a system-Iogical~record mark) is encountered on the
input fIle before an end-of-partition or end-of-information is encountered, information in the partial record is
written to the output fIle as a logical record of level zero (or a physical tape block for an S or L tape).

For the record and block types indicated below, CYBER Record Manager end-of-section (EOS) is equivalent to
a system-logical-record of level O. The routines COPYBR and COPYCR can be used to copy a specified num­
ber of sections for these fIle structures.

Device

SI tapes and mass storage

S and L tapes

Block Type

C

none; EOS and EOR
are not equivalent

Record Type

F,D,R,T,U,S,Z

For CYBER Record Manger W type records, both end-of-section and end-of-partition are written as a system­
logical-record of level O. COPYBR or COPYCR can be used to copy a specified number of sections and parti­
tions. In determining the number of records to. be copied, the user should be aware that the operating system
cannot distinguish between EOS and EOP defmed for W type records. The copy terminates when the specified
number of records has been copied, or when EOI is encountered on Ifn1. For W type records, COPYBR and
COPYCR copy to end-of-information.

Refer to table 4-2 with the COPYCF utility for a list of successful format conversions.

COPYN (CONSOLIDATE FILE)

COPYN consolidates or merges fIles. System-logical-records from up to ten binary input files can be extracted
and written on one output fIle. Input can be from tape, card, or mass storage files. Output can be to a tape,
card, or mass storage file.

Directive statements on file INPUT determine the order of the final file. Several tapes can be merged to create
a composite tape. A routine can be selected from a composite tape, temporarily written on a scratch tape, and
transmitted as input to a translator, assembler, or programmer routine, eliminating the need for tape manipula­
tion by the s~cond program. In its most basic form, COPYN can perform a tape copy.

The format of COPYN is:

COPYN,f,outlfn,inlfnl,

Parameters are order dependent and required. Up to 10 inlfn parameters can be specified.

f Format of output record.

o Copy records verbatim.

nonzero Omit ID from record.

outlfn Logical file name of output fIle, 1-7 letters or digits beginning with a letter.

inlfn Logical fIle name of input fIle, 1-7 letters or digits beginning with a letter.

4-20 60493800 A

System-logical-records to be copied might or might not have an ID prefix table containing the name of the
program or the name associated with the record. A record ID format consists of the first seven characters of

,the secorid word of each record. If records do not contain an ID, record identification directives must specify
the record number (the position of the record from the current position of the file). Records without an ID
are copied verbatim to the output file.

Format of the binary input flies depends on the storage media. A binary tape me consists of the information
between the load point and a double end-of-partition; this file can contain any number of single end-of-partition
marks. A mass storage file ends at end-of-information; a card file must be terminated with a 7/8/9 card.

On the output file, a file mark for an output tape is written by using a WEOF statement in the desired
sequence; or it can be copied in a range of records and counted as a record.

Deck structure for a COPYN job in which all input files are other than INPUT:

Job statement
REQUEST statements as necessary
COPYN call
7/8/9
COPYN directives
6/7/8/9

COPYN DIRECTIVE STATEMENTS

Directive statements for COPYN use are REWIND, SKIPF, SKIPR, WEOF, and record identification statements.
These statements are read from INPUT when COPYN executes. The directive statements are free-field; they
can contain blanks, but must include the separators indicated in each statement description. The ordering of
the directive statements establishes the material written on the output file. Directive statements are written
on the file OUTPUT as they are read and processed. When an error occurs, the abort flag is set; and a
message is printed on OUTPUT followed by the statement in error. This statement is not processed, but an
attempt is made to process the next directive statement. When the last directive statement is processed, the
abort flag is checked; if set, the job is terminated. Otherwise, control is given to the next control statement.

REWIND (REWIND FILE)

REWIND generates a rewind of the named file. This file must not be one of the input or output file names
given on the COPYN control statement nor the system INPUT fIle.

The format of the REWIND directive is:

REWIND,lfn.

lfn Name of file to be rewound, 1-7 letters or digits beginning with a letter.

60493800 A 4-21

SKIPF (SKIP FI LE)

SKIPF skips forward or backward a designated number of partitions on a tape file. Requests for other types
of files are ignored. No indication is given when SKIPF causes a tape to go beyond the double end-of-partition
or when the tape is at load point.

The format of the SKIPF directive is:

SKIPF,lfn,n.

lfn

n

Name of tape file to be skipped, 1-7 letters or digits beginning with a letter.

Number (decimal) of fIle marks to be skipped. +n skips forward n marks;
-n skips backward n marks.

SKIPR (SKIP RECORD)

SKIPR skips forward or backward a designated number of records. With the exception of zero-length records
and tape marks which must be included, requests for other types of files are ignored.

The format of the SKIPR directive is:

SKIPR,lfn, n.

lfn Name of tape fIle in which records are skipped, 1-7 letters or digits beginning with
a letter.

n Number (decimal) of records to be skipped. Zero-length records and fIle marks must
be included in parameter n. .

WEOF (WRITE FILE MARK)

WEOF writes a partition boundary on the named ftle. This ftIe must be an output ftle named on the COPYN
control statement.

The format of the WEOF directive is:

WEOF,lfn.

lfn Logical ftIe name of ftIe, 1-7 letters or digits beginning with a letter.

RECORD IDENTIFICATION STATEMENT

The record identification statement contains the parameters which identify a system-logical-record or set of
records to be copied from a given file.

4-22 60493800 A

The format of the record identification statement is:

pl,p2,p3.

pi

p2

p3

First record to be copied or the beginning record of a set. Name associated with the
record or a number giving the pOSition in the me can be specified.

Last record to be copied in a set of records:

name

decimal
integer

*

**

/

o or blank

System-logical-records pi through p2 are copied .. p2 must be located
between pI and end-of-information.

Number of records to be copied, beginning with pl. Zero-length
records and fue marks are counted. Copying stops when the me
end is encountered, even if the count has not been reached.

pi through an end-of-partition are copied.

pI through a double end-of-partition are copied.

pi through a zero-length record are copied.

Only pi is copied.

Input file to be searched. If pi is a name, and p3 is omitted, all input files declared
on the COPYN statement are searched until the pi record is found. If it is not
located, a message is issued. If pi is a number and p3 is omitted, the last input me
referenced is assumed. If this is the first directive statement, the first input file on
the COPYN statement is used.

Examples of record identification statements:

SIN, TAN, INPUT A

SIN, 1 O;INPUT A

SIN, TAN

SIN"INPUT A

I,TAN,INPUTA

1,10,INPUTA

1, *,INPUTA

60493800 A

Copies all. system-logical-records from SIN through TAN from file INPUT A.

Copies 10 system-lOgical-records from file INPUTA, from SIN through SIN+9.

Searches all input mes beginning with current fue or first input fue. When
SIN is encountered, all system-logical-records are copied from SIN through
TAN or until an end-of-partition is encountered.

Copies system-logical-record SIN from file INPUTA.

Copies the current system-logical-record through TAN from INPUT A.

Copies 10 system-logical-records, beginning with the current system-logical­
record on me INPUT A.

Copies the current system-logical-record through the first fue mark encountered
on INPUTA.

4-23

FILE POSITIONING FOR COPYN

Files manipulated during a COPYN operation are left in the position indicated by the previously executed
directive. The fJJ.e containing pI is positioned at the record following p2. Other mes remain effectively in
the same position.

When COPYN is searching for a named record and p3 has been omitted, each input file IS searched in turn
until either the named record is found or the original position of the me is reached. The job INPUT file,
however, is not searched end-around.

In contrast to the end-around search, a copy operation does not rewind files. An end-of-partition terminates
a copy even if the record named in p2 has not been encountered. Since the output file is not repositioned
after a search, COPYN can be re-entered. Therefore, the programmer is responsible for any REWIND, SKIP,
or WEOF requests referencing the output file.

\

COPYN does not check for records duplicating names on other files. If such records exist, the programmer is
responsible for them. COPYN uses the first record encountered that matches the name on a directive
statement.

Examples of file positioning:

4-24

1. Record identification statement: REC "INPUT 1

2.

BAKER REC SIN TAN ZEE
E E
00
F F

Input me I ABLE
INPUT 1

~------~--------~----~------~------~------~----~------~

If INPUTA were positioned at TAN, TAN and ZEE would be examined for REC. The do~uble
EOP would cause ABLE to be the next system-logical-record examined, continuing until REC is
read and copied to the output me. INPUTI would then be positioned at SIN.

Record identification statement: RECA

I I I
E E

Input file INPUT 1 , A1 B1 Z1 00
positioned at Bl F F

Input me INPUT 2 ,

I I
E E

positioned at A2 RECA 02 00
load point FF

Input me INPUT3,

I I

E E
positioned at A3 83 C3 Z3 00
load point F F

All records from Bl through Al are searched to find RECA; this repositions INPUTI to Bl. A2 is
searched, and when RECA is found,' it is copied to the output file. INPUT2 remains positioned at
D2. INPUT3 is not searched.

60493800 A

3. Record identification statements and binary records on INPUT fHe. Directive statements are:

REC"INPUT
JOBI,JOB3,INPUT
ABLE"IN2
7/8/9
REC (binary)
7/8/9
JOBI (binary)
7/8/9
JOB2 (binary)
7/8/9
JOB3 (binary)
7/8/9

Because the INPUT file is not searched end-around, REe and JOBI through JOB3 must directly
follow the requesting record identification statements in the order specified by them. An incorrect
request for an INPUT record terminates the job.

COPY5BF (COpy SHIFTED BINARY FILE)

COPYSBF adqs a carriage control character to the beginning of each line during a copy to a second me. It is
used with flIes to be printed when the existing first character is not a carriage control character. COPYSBF
inserts a page eject character at the beginning of the first line. A blank is inserted at the beginning of sub­
sequent lines to cause single spacing. A minimum field length of 10000 (octal) is required for COPYSBF.

A tape input flIe must be binary. Each line must be terminated by a 12-bit byte of zeros in the low order position I
of the last central memory word of the record.

The format of COPYSBF is:

COPYSBF ,IfnI ,lfn2.

Parameters are order dependent and optional.

IfnI

Ifn2

Name of input me to be copied onto Ifn2, 1-7 letters or digits beginning with a letter.
Default is INPUT.

Name of output fue onto which IfnI is to be copied, 1-7 letters or digits beginning
with a letter. Default is OUTPUT.

COPYX5 (COpy X TAPE TO 51 TAPE)

COPYXS converts a binary tape in X format to SI format. X tapes exist as a result of operating systems
that are predecessors to NOS/BE I. The binary X tape logical structure contains 512-word PRUs with short
PRUs of sizes that are variable multiples of central memory words or 136 character PRUs.

60493800 C 4-25

The format of COPYXS is:

COPYXS,xlfn,scplfn,n.

Parameters xlfn and scplfn are required.

xlfn Logical fIle name of input X tape, 1-7 letters or digits beginning with a letter.

scplfn Logical fIle name of output SI tape, 1-7 letters or digits beginning with a letter.

n Number (decimal) of partitions to be copied. Default is 1.

COPYXS is used in the following manner. Both ftles must be requested as S format.

REQUEST(xlfn, S)
REQUEST(scplfn,S)
COPYXS(xlfn, scplfn, n)

The output tape is produced in SI fonnat, but is flagged in the system tables as S format. To read the
output tape in the same job, the following control statements are needed:

UNLOAD(scplfn)
REQUEST(scplfn, MI)

COPYXS c~not determine when end-of-information occurs on an X tape; therefore, at least n partitions to
be copied must exist on the X tape. Neither the input nor the output tape is rewound after conversion.
After the requested number of partitions has been copied, the output tape is backspaced and positioned
dire,ctly in front of the first tape mark preceding the EOF trailer label. Subsequent files can be copied to the
output tape; however, the block count in the trailer label is then incorrect.

DELSET (DELETE MEMBER)

DELSET deletes devices from a device set. It cannot be executed while a device set is being shared. All
member devices must be deleted before a DELSET is issued for the master device. The master device must
be mounted, before PELSET is issued. Permanent ftles, queue files, and local ftles residing on the device
must be removed before DELSET is issued; if any portion of a local ftle or permanent file resides on the

, device to be deleted, the DELSET request is aborted.

The format of DELSET is:

4-26

DELSET, SN=setname, MP=vsn 1 , VSN=vsn2.

All parameters are required and are order independent.

SN=setname

MP=vsnl

Name of set from which member is to be deleted, 1-7 letters or digits beginning with
a letter.

Volume serial number of master device for the device set, 1-6 letters or digits with
leading zeros assumed.

60493800 A

VSN=vsn2 Volume serial number of member to be deleted from the device set, 1-6 letters or digits
with leading zeros assumed.

DISPOSE (RELEASE FILE)

DISPOSE releases a me for end-of-job processing or specified disposition immediately or at the true end-of-job.
DISPOSE can be used to:

Assign a disposition code for an output file, including a forms code

Send a fIle to a central site or remote site device

Evict a file.

The me referenced with DISPOSE must reside on a public queue device or on ECS and must not be a perma­
nent me.

When a special-name file is to be evicted such that all file data and references are destroyed, the DISPOSE
control statement should be used in preference to an UNLOAD or RETURN control statement. UNLOAD
and RETURN cause the implicit disposition of the me to occur. Only DISPOSE or ROUTE can evict a file
without causing special-name me output.

The format· of DISPOSE is:

*dc=C l*dc I
DISPOSE,lfn, dc=Cff·

dc=Iid

The only required parameter is lfn. The asterisk is optional before the dc parameter.

lfn

*

dc

Name of file to be disposed, 1-7 letters or digits beginning with a letter. If only lfn
is specified, the me is evicted.

Defer disposition until end-of-job. Must be used if DISPOSE control statement appears
before the file is created. In the absence of *, disposition occurs when the DISPOSE
control statement is encountered in the job stream. The * cannot be used when disposing
a file to an INTERCOM terminal or to a forms code.

Disposition code. If dc is not specified, the file is evicted.

PR
P2
LR
LS
LT
PB
PU

Print on any available printer
Print on 512 printer
Print on 580-12 printer
Print on 580-16 printer
Print on 580-20 printer
Punch standard binary format
Punch Hollerith format

P8
FRt
PTt
HRt
HLt
FLt

Punch free-form binary format
Print on microfilm recorder
Plot on any available plotter
Print on hardcopy device
Plot on hardcopy device
Plot on microfilm recorder

t Supporting drivers must be supplied by the installation.

60493800 B 4-27

C File is to be routed to the central site

Cff Code for special card or paper form ff. Codes are defined by the installation.

lid File is to be routed to the INTERCOM terminal specified by id.

Identification on the printout or punch output ftle is the name of the job that executed DISPOSE.

Examples of DISPOSE usage:

4-28

1. JOB.
COBOL.
LGO.
DISPOSE, OUTPUT ,PRo
REWIND(LGO)
FTN.
LGO.
7/8/9
COBOL program
7/8/9
data for COBOL program
7/8/9

Prints OUTPUT on any available printer

Creates print file on OUTPUT

FORTRAN program Creates unrelated print me on OUTPUT
7/8/9
data for FORTRAN program
6/7/8/9

This example creates two unrelated print fIles. The use of DISPOSE allows the fIles to be printed
separately. The job dayftle is attached to the second OUTPUT fIle.

2. JOB.
DISPOSE,HERON, *PR=C.
COBOL.
LGO.
7/8/9
COBOL program
7/8/9
data for COBOL program
6/7/8/9

File HERON to be printed at central site at end of job

Creates me HERON and file OUTPUT

This job creates a file named HERON and prints it at central site. If this job is submitted from an
INTERCOM terminal, the OUTPUT file and the dayfIle are returned to that terminal.

60493800 B

DMP (DUMP CENTRAL MEMORY)

DMP prints the contents of selected areas of central memory. Four types oLdumps are possible, depending
on the relative values of the parameters on the DMP control statement:

Exchange package dump Parameters omitted or all parameters specified are 0.

Control point area dump Parameters equal in value and not 0.

Relative dump Parameters specify address within fteld length.

Absolute dump Parameters are six digits in length and begin with a 4, 5, 6, or 7. Absolute
dumps might be inhibited at some installations.

DMP output appears on the file OUTPUT. Each output line contains the contents, in octal, of up to four
central memory words, with the address of the frrst word at the beginning of the line.

When the content of a word is identical to the last word printed, printing of that word is suppressed.
Printing resumes with the next word having a different content; the address of the word at which
printing resumes is printed and marked by a right arrow.

When the content of a word is the address of that word, printing is suppressed. Printing resumes with
the next word that does not have its address as its content; the address of the word at which printing
resumes is printed and marked by a greater-than sign.

EXCHANGE PACKAGE DUMP

The format of DMP that produces an exchange package dump is:

DMP,O,O. or DMP.

Either or both of the parameters can be omitted.

Output from. the dump includes:

The contents of the exchange jump package as noted below.

The contents of the communication area of the job field length, addresses RA through RA + 1 00.

The contents of the first 100 octal words before and after the address to which the P register points,
provided the addresses are with the field length. If the P register is 0, the P address in bits 30-47 of
RA+O determine the locations to be dumped. If the P register or the P address in RA+O is less than
200 (octal), the first address dumped is 100. If both the P register and the P address are 0, only the
communications area and the exchange package are dumped.

The 16-word exchange package includes the following information:

P Program register contents

RA Central memory address of beginning of user field length

60493800 A 4-29

FL Central memory address of field length limit

EM Error mode register divided by 100 (octal)

RE ECS reference address divided by 1 000 (octal)

FE ECS field length divided by 1000 (octal}

MA Monitor address applicable only to machines with monitor exchange jump instructions

AO-A7 Contents of A registers 0-7

BI-B7 Contents of B registers 1-7 (BO is always zero)

XO-X7 Contents of X registers 0-7

When the exchange jump package is dumped, the following information is given also if addresses are within the
field length. A message **OUT OF RANGE** appears if they are outside the field length.

C(AI)-C(A 7)

C(B I)-C(B7)

Contents of addresses listed in registers AI-A7

Contents of addresses listed in registers BI-B7,

CONTROL POINT AREA DUMP

The format of DMP that produces a control point area dump is:

DMP,x,x.

x Any octal value except 0 can be specified.

This control statement dumps the entire (200 octal word) control point area.

RELATIVE DUMP

The format of DMP that produces a relative dump of locations with the job field length is:

DMP,from, thru.

When only one parameter appears, it is presumed to be the thru parameter and dump begins at RA.

from Address at which dump is to begin after RA, octal.

thru Address at which dump is to end, octal. If address exceeds FL, FL is substituted.

4-30 60493800 A

ABSOLUTE DUMP

The format of DMP that produces a dump of absolute address in memory is:

DMP,from,thru.

When only one parameter appears, it is presumed to be the thru parameter and dump begins as if
400000 (octal) were specified.

from Absolute address to be dumped, expressed as six octal digits address+nOOOOO where n
is 4 through 7 as noted below. If the value exceeds memory size, no dump occurs.

thru Absolute address at which dump is to end, expressed as six octal digits address+nOOOOO
where n is 4 through 7 as noted below. If value exceeds the size of memory, dump
stops at the end of memory.

If the value specified is less than 400000, it is treated as address+400000.

Absolute addresses are expressed in six octal digits. The first digit must be 4 through 7, which sets the upper
bit in the address to indicate an absolute dump. DMP subtracts 400000 from the addresses specified to
determine the absolute address to be dumped. The maximum address that can be dumped is:

thru Parameter

4xxxxx
5xxxxx
6xxxxx
7xxxxx

Maximum eM Address Dumped

77 777 (32K)
177 777 (65K)
277 777 (98K)
377 777 (131K)

Only the first 131K words of memory can be dumped with DMP. See the ABS control statement if more
than 131K of memory is to be dumped. DMP can also be called using the SYSTEM macro described in
section 6.

DMPECS (DUMP EXTENDED CORE STORAGE)

DMPECS prints the contents of selected areas of Extended Core Storage. The file on which information
appears and the format of the dump are both selected by control statement parameters. Only the field
length assigned to the job can be dumped. All addresses are between RE and FE, the reference address and
field length of assigned ECS.

The format of DMPECS is:

DMPECS,from,thru,format,lfn.

Parameters are positional; from and thru are required.

from Address (octal) at which dump is to begin after RE.

thru Address (octal) at which dump is to end. If address exceeds FE, FE is substituted.

60493800 A 4-31

format

lfn

Format of each output line

o or 1

2

3

4

4 words in octal and in display code; default

2 words in 5 octal digit groups and in display code

2 words in 4 octal digit groups and in display code

2 words in octal and in display code

Name of file on which printout is to appear, 1-7 letters or digits beginning with a
letter. If omitted or 0, OUTPUT is assumed.

The dump begins at the closest multiple of 10 (octal) less than or equal to the value of the from parameter;
the dump ends at the closest multiple of 1 0 (octal) greater than the value of the thru parameter minus 1.

DSMOUNT (DISASSOCIATE DEVICE)

DSMOUNT disassociates a private device from the job. DSMOUNT is a logical operation. When DSMOUNT
specifies the master device of a private device set, the entire set is disassociated from the job. A CLOSE/
UNLOAD function is issued for each open file on the set before each mounted member device is dismounted.
Finally, the master device is logically dismounted from the job.

The format of DSMOUNT is:

DSMOUNT ,VSN=vsn,SN=setname.

Both parameters are required and order independent.

VSN=vsn

SN=setname

Volume serial number of device to be dismounted, 1-6 letters or digits with leading
zeros assumed. Can be a member device or a master device.

Name of device set to which this device belongs, 1-7 letters or digits beginning with
a letter.

DUMPF (DUMP PERMANENT FILE TO TAPE)

DUMPF dumps permanent files to a tape. It can be used to clear permanent files from a mass storage device
or to maintain back-up copies of files selected by parameters on the DUMPF control statement. Parameters
on the DUMPF can identify a single me by name or specify the criteria by which the permanent file system
selects mes for dumping.

The dump tape must be S tape format with the logical file name DUMT APE. A REQUEST statement must
appear in the job before DUMPF is called.

Three dumps are possible:

Mode 1

4-32

Back~up dump. The original copy of the file remains on mass storage ready for
immediate access by an executing job.

60493800·A

Mode 3

Archive dump. The file remains a permanent file, but with archive status. The only
copy of the me resides on the dump tape; it can be accessed by an executing job if
the operator makes the archive tape available so that the file can be reloaded to mass
storage.

Destructive dump. The me is no longer a permanent me. The only copy· of the file
resides on the dump tape; it cannot be accessed unless the LOADPF utility is executed
to restore the file to permanent me status.

DUMPF execution causes an implicit attach of a file having the permanent me name DUM. The device set
from which files are being dumped must contain a copy of DUM cataloged with an ID of PUBLIC, a TK
password of DUMPF, and installation defined passwords for RD, MD, and CN. Passwords to access DUM must
be submitted as part of the DUMPF call.

For each cycle dumped, DUMPF makes an output listing entry that contains the permanent me name, owner ID,
cycle number, volume serial number of the dump tape, date of dump, a comment, and the flagging of any
parity errors.

The format of DUMPF is:

DUMPF ,PW=pw ,MO=n, { !=lfn 1 } ,LF=lfn2,CL,DP=a,ID=name,PF=pfn,CY=cy ,SN=sn,VSN=vsn,IN=ddd,JN=yyddd,

LA=mmddyy ,DA=yyddd,CD=mmddyy ,TI=hhmm.

Only PW is required; all other parameters are optional and order independent. Only one CD, DA, IN,
LA, or IN parameter can appear. If a terminator does not appear at the end of the parameter list,
column I of the next card or line is considered to be a continuation of the DUMPF parameter list.

PW=pw

MO=n

I=lfnl

I

LF=lfn2

60493800 0

RD, MD, or CN password for DUM, depending on mode of dump. See CATALOG
control statement for password definitions.

Dump mode:

Back-up mode. Permanent file tables and all associated mass storage
space are intact. RD password required. Default.

2 Archive dump. Mass storage space is released, but permanent file tables
remain with the files marked as being on an archive tape. MO password
required.

3 Destructive dump. All permanent file tables and mass storage spaces are
released as the files are dumped. CN password required. The central site
operator receives notification when a mode 3 dump is attempted and must
authorize continuance of the dump.

Logical file name of directive file for MO=l dump; 1-7 letters or digits beginning with a
letter. All other parameters except MO, SN, CL, and PW are ignored.

Directives for MO= 1 are on INPUT.

Output listing file. Default is OUTPUT.

4-33

I

CL

DP=a

ID=name

PF=pfn

CY=cy

SN=sn

VSN=vsn

IN=ddd

IN=yyddd

LA=mmddyy

DA=yyddd

CD=mmddyy

TI=hhmm

Complete list option selected. All files in the permanent me directory are listed. If CL
is omitted, information is listed only for files which are dumped.

Dump type:

A All files meeting criteria of other parameters. Default.

X All mes meeting criteria of other parameters only if their expiration dates
are equal or less than current date.

C All fIles meeting criteria of other parameters only if they have been
modified, renamed, created, or extended since the last DP=C dump.

Dump files with this owner.

Dump files with this permanent me name. ID is also required.

Dump cycle cy of me identified by PF and ID. CY is ignored and the dump continues
if this cycle is not found or if PF and ID have not also been specified.

Dump files from device set with this name; 1-7 letters or digits beginning with a letter.

Dump ftles from this device of device set specified by SN; 1-6 letters or digits with
leading zeros assumed. VSN is ignored if SN is omitted.

Dump ftles inactive this number of days; 1-3 digits. Can be qualified by a TI parameter.

Dump fIles inactive since this ordinal date; 5 digit ordinal date format. Can be qualified
by TI parameter.

Dump flies not attached on or after this date; 6 digit month-day-year format. Can be
qualified by TI parameter.

Dump ftles created, modified, renamed, or extended after this date; 5 digit year-and-day­
of-year format. Can be qualified by TI parameter.

Dump ftles created, modified, renamed, or extended after this date; 6 digit month-day­
year format. Can be qualified by TI parameter.

Time qualifier for date parameters; 4 digit 24 hour clock format. If date parameters
are not specified, TI is ignored.

Several copies of DUMPF can execute at the same time on the same set as long as all copies running have
identical parameters. If an attempt is· made to run a DUMPF with different parameters than one already
running, all except the first DUMPF aborts.

If a group of mes is to be dumped for back-up purposes, they can be identified by name arid owner in a
directive ·record. The I parameter is required to specify the name of the me containing directives. Directive
format is as follows. Parameters are order independent and ending punctuation is not required. The CY and
ID parameters are optional.

PF=pfn,CY=cy,ID=name

4-34 60493800 A

EDITLIB (CONSTRUCT USER LIBRARY)

EDITLIB constructs user libraries from a group of central processor routines or overlays. That library is avail­
able to the system loader by specific direction in· the loader control statements for a job. It can also create
and maintain system libraries and create deadstart tapes. With EDITLIB a user library can be modified by
the addition, deletion, or replacement of routines; and statistics about library contents can be listed.

The user library must contain assembled central processor routines, programs, or text records produced by the
COMPASS assembler, one of the system compilers, or loader generated overlays. Library records can be inde­
pendent programs, subroutines, or overlays. Binary output from SEGLOAD cannot be made part of a library.
Unassembled text records in BCD format, peripheral processor programs, and source language programs cannot
be made part of user libraries.

EDITLIB considers each program on the user library to be a single unit occupying a system-logical-record. It
extracts the name, entry points, and external references from tables output with the program assembly and
uses them to construct tables describing the library file. Library tables are used by the loader to locate pro­
grams on the fIle. EDITLIB changes the tables when the user library is modified. Format of user library
tables is the same as that for system libraries. A user library file created by EDITLIB contains:

Assembled programs

Tables referring to Entry points
External references
Program numbers
Program names

The program number table is used to link external references, entry points, and program names.

A user library can contain at most 2047 programs, 2047 external references, and 2047 entry points. A partic­
ular program in the library can have at most 124 entry points and 124 external references.

The user . library file generated by EDITLIB can be on mass storage or magnetic tape. If the library fIle name
is assigned to a tape fIle before EDITLIB is called, the library is in sequential format on that tape, with the
library tables preceding the programs. Otherwise, the library is in random format on mass storage. When the
random library file is to be retained as a permanent me, the library fIle name should be associated with a
permanent fIle device before EDITLIB is called.

If a user library is to be copied from mass storage to tape, the EDITLIB dir~ctive RANTOSEQ should be
used rather than a COpy utility. Likewise, SEQTORAN should be used to copy a .library from tape to disk.
The COpy utilities cannot copy a library fIle from mass storage correctly.

The user is responsible for cataloging and attaching any permanent ftles that are used by EDITLIB while per­
forming the task specified on each directive, and for extending permanent fIles that have been changed.

EDITLIB CONTROL STATEMENT FORMAT

The EDITLIB utility is called by an EDITLIB statement in the control statement section. If encountered
during job processing, EDITLIB accesses the next unprocessed section of the INPUT file; unless the I param­
eter names another source of directives. A parameter on this statement specifies the file that contains
EDITLIB directives. These directives provide details for creating or manipulating the user library.

60493800 A 4-35

The format of EDITLIB is:

EDITLIB(USER,I=lfndir,L=lfnlist)

All parameters are optional.

USER

lfndir

lfnlist

Distinguishes user library definition from system library. Default is USER.

Logical ftle name con~aining directives, 1-7 letters or digits beginning with a letter.
Default is INPUT. I is identical to I=INPUT.

Logical ftle name to receive listable output, 1-7 letters or digits beginning with a letter.
Default· is OUTPUT. L is identical to L=OUTPUT.

The following deck structure assembles two programs and adds them to an existing library:

job statement
COMPASS.
FTN.
ATT ACH(ALIB,ID=SMITH)
EDITLIB(USER)
EXTEND(ALIB)
7/8/9

COMPASS program to be assembled
7/8/9

FORTRAN Extended program to be compiled
7/8/9

Directives instructing EDITLIB to add programs to user library ALIB from LGO me
6/7/8/9

EDITLIB DIRECTIVE FORMAT

The directive section for EDITLIB must contain only valid directives. EDITLIB considers the first 72 columns
of each 80 column card or 90 column card image to contain a separate directive. Blanks can be used freely;
EDITLIB removes them except in a literal or comment field. Required format for directives is similar to
system control statement format.

The format of EDITLIB directives is:

.4-36

keyword. or keyword(parameter list)

Parentheses are required around parameter lists. Optional parameters have the format parameter=value;
all others are required. Required parameters must appear in the order given; optional parameters can
appear in any order after the required parameters.

Directive format and use is summarized below:

UBRARY(libname, {~}) Defines library to be created or modified

60493800 A

FINISH. Terminates librarY manipulation

ENDRUN. Stops execution of directives

ADD(prog,from,AL=level,FL=fl,FLO=O,LIB) Adds new program to library

REPLACE(prog,from,AL=level,FL=fl,FLO=O,LIB) Replaces program on library

DELETE(prog) Deletes program in library

SET AL(prog,level) Changes access level

SETFL(prog,fl) Changes field length requirements

SETFLO(prog, { ~ }) Sets FL override bit for INTERCOM

LISTLIB(prog,lfn) Lists program data from library me

REWIND(lfn) Rewinds file

CONTENT(prog,lfn) Lists program data from me

SKlPF({ n } ,lfn) Skips ahead n records or to prog
prog

SKlPF(n,lfn,F) Skips n flIes forward

SKIPB({n } ,lfn) Skips back n records or to prog start
prog

SKlPB(n ,lfn ,F) Skip n ftles backward

*/ Inserts comments. in output

RANTOSEQ(rlfn,slfn) Rewrites random library as sequential library

SEQTORAN(slfn,rlfn) Rewrites sequential library as random library

The prog parameter in these directives can take several forms:

A single program name can be stated. EDITLIB searches the entire me specified to find the named
program.

An asterisk can replace the program name. EDITLIB processes all programs from the current file position
to end-of-file.

A range of programs to be included in directive execution can be specified with a + between the first and
last programs to be processed. In a file with records A,B,C,D,E, the range B+D represents B,C,D.

60493800 A 4-37

A range of programs to be excluded from directive execution can be specified with a - between the
first and last programs to be considered. In a me with records A,B,C,D,E, the range B-D represents
A and E.

An asterisk can replace either the first or last program named in a range. For the first named program,
it is equated with the current me position; for the last, it is equivalent to end-of-partition.

For the ADD, REPLACE, and REWIND directives only, several individual programs can be stated. In a
me with records A,B,C,D,E, the parameter DIBlE represents D and Band E. EDITLIB searches the
entire me specified to find the named program.

A single program to be excluded from directive execution can be specified with a dash (-) preceding the
program name or with the program name appearing at both ends of the range of programs to be excluded.

Program names must not exceed 7 characters. Any character supported by the system is legal. If characters
EDITLIB uses for delimiters are in a name, the entire name must be written as a literal between dollar signs.
These characters are:

$ () + I blank

Any dollar sign to be included in the program name must be prefixed by a second dollar sign.

If the prog parameter is a single program name, EDITLIB searches the entire file for that program. If the prog
parameter is a range, EDITLIB searches the entire file for the first program in the range, but does not search
end-around for the second program. Thus, a range goes from the first program through either the second pro-'
gram or end-of-partition whichever occurs first. The me INPUT is not searched.

The interpretation of the * depends on me format. The current position of a library file is always defined
to be the beginning of the file. Current position of other fIles is simply the beginning of the next record on
the file, which can be controlled by the user with file manipulation directives. An * replacing the last pro­
gram is equivalent to stating end-of-partition.

Examples of names acceptable to EDITLIB:

Parameter Format Resulting Program Name

PROG12 PROG12

$PROG12$$$ PROG12$

$1-0$, 1-0

AA BB AABB

$AA BB$ AA BB

3AB 3AB

library fIle names should not begin with ZZZZZ since these are reserved for system names.

4-38 60493800 A

MANIPULATION OF LIBRARY FILES

A library is created by identifying the library in a LIBRARY directive followed by file manipulation statements
and ending with the FINISH directive. Multiple LIBRARY/FINISH sequences are permitted within an
EDITLIB directive set. An ENDRUN should follow the last FINISH in the EDITLIB directive set. If
ENDRUN is not supplied by the user, EDITLIB inserts it.

Existing user libraries in random me format are modified by the ADD, REPLACE, and DELETE directives
that change programs in the library. The SETAL, SETFL, and SETFLO directives change parameters in the
program name table of entries for existing libraries. These directives must be issued between the LIBRARY
(lfn,OLD) and FINISH directives.

The format of library files can be changed by the RANTOSEQ function and the SEQTORAN function.

File positioning statements can appear anywhere in the directive record. EDITLIB rewinds all fues except
INPUT before executing any directives. After a random library is written, it is rewound. When a new sequen­
tial library is written, it is left-positioned after the end-of-partition.

A list of information about any or all programs on a library file or a file of assembled information is obtained
by the LISTLIB and CONTENT directives. Information listed comes from the program tables output with
every assembled record. It includes:

Program name

Date, time, and compilation or assembly machine

Entry points

External references

AL and FL values

Length of object deck in central memory words

Type of program: relocatable or absolute

ADD (ADD PROGRAM DURING LIBRARY CREATION)

ADD directives between LIBRARY(lfn,NEW) and FINISH directives create a user library. Programs (other
than peripheral processor programs) can be added from any file attached to the job, as long as the program
contains the necessary prefix table material at the beginning of the assembled information. If the directive is
in error, a message is issued, the programs are not added, and processing continues.

The format of ADD is:

AD~rog,from.AL=level.FL=fI.FLO= {~ } .LIB)

Parameters prog and from are required; all others are optional.

60493800·B 4-39

prog

from

AL=level

FL=f1

FLO={~ }

LIB

Name of program or range of programs to be added.

Logical file name where assembled program currently resides, 1-7 letters or digits
beginning with a letter.

Access level of 1-4 (octal) digits used to determine whether or not a given INTERCOM
user can attach and use the program named. Also used to mark programs for access by
control statements; level must be an odd number. Program is available only to internal
calls unless AL is odd. Default is O.

Maximum field length (0 to 377777 (octal) required for program loading and execution.
If FL=O, the field length specified on the job statement or the last RFL statement
encountered is used. Default is O.

Field length override bit. If FLO=I, then the field length from the job control state­
ment CM parameter or from the RFL control statement or from the EFL INTERCOM
command, overrides FL. If FLO=O, no override is allowed. Default is O.

Indicates the parameter from is a user library name. Allows programs to be added from
an existing user library. It directs EDITLIB to search the directory of a file in library
format.

If AL, FL, or FLO values are wanted in the new library tables, they must be explicitly stated in the directive,
even if the addition is to be made from an existing library. To change the values of these parameters in an
existing library, use the SETAL, SETFL, and SET FLO directives.

Examples of valid ADD formats and their results:

Parameter Format Result

ADD(*,TREES) All programs between current position and the end-of-me
TREES is added.

ADD(RAINIER,MTS,FL=14400) All of me MTS is searched for program RAINIER; field length
of 14400 (octal) is required to execute RAINIER.

ADD(REDWOOD-SEQUOIA,TIMBER) All programs on file TIMBER, except REDWOOD, SEQUOIA,
and all those between, are added.

ADD(*+ASPEN,YELLOW) All programs from the current position of YELLOW through
program ASPEN are added.

ADD(BIG/SHARP,LEAF) File LEAF is searched as needed, and programs BIG and
SHARP are added.

ADD(ALP,LIBR,LIB) The program name table of library LIBR is searched for
program ALP which, when located, is added to the current
library.

4-40 60493800 B

CONTENT (LIST FILE)

CONTENT lists any file of assembled programs, whether in library format or not.

The format of CONTENT is:

CONTENT(prog,lfn)

prog Program or range of programs to be listed.

lfn Logical fIle name containing prog, 1-7 letters or digits beginning with a letter.

DELETE (DELETE PROGRAM FROM LI BRARV)

DELETE logically deletes all references to the named program from library tables.

The format of DELETE is:

DELETE(prog)

prog Name of program or range of programs to be deleted.

Examples of valid DELETE formats and their results:

Parameter Format Result

DELETE(BIRCH+ASH) Programs BIRCH through ASH on library being modified are
deleted.

DELETE(LAUREL-MADRONE) All programs Qn existing library except LAUREL, MADRONE,
and those between, are deleted.

Programs nam,ed in a DELETE or REPLACE directive are logically deleted from the library file. Records in
the file are not overwritten; but in the case of a REPLACE, the file is extended with the addition of a new
program. To completely eliminate programs from the library, it is necessary to construct a_new library using
the old one as the source.

ENDRUN (STOP EXECUTION)

During directive processing, EDITLIB first interprets each directive in the record excluding comment statements.
Execution begins after all directives are interpreted.

When an ENDRUN is encountered during execution phase, execution stops. In most instances, ENDRUN is the
last directive in the record. By placing it earlier in the record, syntax of succeeding directives can be checked
without an error· producing premature termination.

The format of ENDRUN is:

ENDRUN.

60493800 B 4-41

FINISH (STOP FILE MANIPULATION)

FINISH indicates the end of library construction.

The format of FINISH is:

FINISH.

LIBRARY (DELIMIT LIBRARY)

liBRARY identifies the library to be manipulated. This directive must precede all other directives except
comments or me manipulation directives. Every directive set calling for library creation or modification must
have at least one such directive. A FINISH directive is required to mark the end of library construction. File
manipulation statements can appear between LIBRARY and FINISH.

The format of LIBRARY is:

UBRARY~bname, { ~~ })

libname Library name and name of me containing library during this job.

OLD Used when existing library to be modified is referenced by libname.

NEW Used when libname refers to -new library or directory to be created.

LlSTLIB (LIST LIBRARY FILE)

LISTLIB lists a library file. Part or all of the library can be listed depending on the number of programs
indicated by the prog parameter. The LISTLIB directive cannot appear between a LIBRARY and a FINISH.

The format of LISTUB is:

LISTLIB(prog,lfn)

prog Program or range of programs to be listed.

lfn Logical file name containing prog, 1-7 letters or digits beginning with a letter.

RANTOSEQ (CONVERT RANDOM FILE TOSEOUENTIAL FILE)

RANTOSEQ takes a disk resident library file in random format and creates a sequential library file containing (
the same programs. This directive cannot appear between a LIBRARY and FINISH. \

The format of RANTOSEQ is: (

RANTOSEQ(rlfn,sIfn)

4-42 60493800 B
!'
\

1'1
/'

dfn Disk resident random library that is to be converted.

slfn Sequential library created from rlfn.

REPLACE (DELETE AND REPLACE PROGRAM)

REPLACE differs from the ADD directive in that it causes a progratll with an identical name to be deleted
from the library before the new program is added. If a program with that name does not exist, an informa.;
tive message is issued and the new program is added to the library.

The format of REPLACE is:

REPLACE(prog,from,AL=level,FL=fl,FLO=O,LIB)

Parameters have the same meaning as those of the ADD directive. AL, FL, and FLO values must be stated
explicitly if values other than the defaults are wanted. Current values in source library or existing library tables
are not preserved when ADD or REPLACE is used. See ADD for parameter definitions. I

Examples of valid REPLACE formats and their results:

Parameter Format

REPLACE(MAPLE, TREES,FLO=O)

REPLACE(OAK,TREES)

REPLACE(ACORN, TREE,LIB)

REWIND (REWIND FILE)

The format of REWIND is:

Result

Existing program MAPLE is deleted; program MAPLE is added
from file TREES: FLO is set to 1; FL and AL are set to
default values.

Existing program OAK is deleted and replaced; FL, FLO, and
AL receive default values.

Program name table for library TREE is searched for program
ACORN. The named program is deleted from the current
library and the new program ACORN is added from library
TREE.

REWIND(lfn) or REWIND(lfn/lfn/ ... lfn)

lfn Logical me name of file or files to be rewound~

SEQTORAN (CONVERT SEQUENTIAL FILE TO RANDOM FILE)

SEQTORAN takes a tape resident library file in sequential format and creates a disk resident library me con­
taining the same programs. The directive cannot appear between a LIBRARY and a FINISH.

60493800 C 4-43

The format of SEQTORAN is:

SEQTORAN(slfn,rlfn)

slfn Tape file in sequential format that is to be converted.

rlfn Random library file created from slfn.

SETAL (CHANGE ACCESS LEVEL)

SETAL assigns a new access level to the named program.

The format of SETAL is:

SET AL(prog,level)

prog Name of program or range of programs.

level New access level of 1-4 (octal) digits.

SETFL (CHANGE FIELD LENGTH)

SETFL assigns a new field length to the· named program.

The format of SETFL is:

SETFL(prog,fl)

prog Name of program or range of programs.

fl New field length of 0 to 377777 (octal).

SETFLO (SET FIELD LENGTH OVERRIDE BIT)

SETFLO sets the field length override bit for INTERCOM.

The format of SETFLO is:

SETFLO(prog, { ~ })

prog Name of program or range of programs.

o
-}

New field length override parameter. 1 allows override. 0 is the default value and
does not allow override.

4-44 60493800 A

SKIPB (SKIP BACKWARD)

SKlPB repositions a library backward one or more records or files. The library is positioned at the beginning of a I
record or ftle. When beginning-of-information or end-of-information is encountered, a skip by count is terminated.
For a skip by name, the entire file is searched, if necessary, in the direction stated. Skip by program name is applicable
to sequential fIles only.

The format of SKIPB for records is:

SKIPB({ n } ,lfn)
prog

n Number (decimal) of records to be skipped backward; cannot be zero.

prog Program name to which instruction skips.

lfn Logical fIle name containing prog, 1-7 letters or digits beginning with a letter.

The format of SKIPB for files is:

SKIPB(n,lfn,F)

n Number (decimal) of files to be skipped backward; cannot be zero.

lfn Logical file name of multi-file, 1-7 letters or digits beginning with a letter.

F Indicates files are to be skipped, not records.

SKIPF (SKIP FORWARD)

I

SKlPF repositions a library forward one or more records or files. The library is positioned at the beginning of a record I
or file. When beginning-of-information or end-of-information is encountered, a skip by count is terminated. For a
skip by name, the entire file is searched, if necessary, in the direction stated. Skip by program name is applicable to

sequential files only. '

The format of SKIPF for records is:

SKIPF({ n } ,lfn)
prog

n Number (decimal) of records to be skipped forward; cannot be zero. I
prog Program name to which instruction skips.

lfn Logical file name containing prog, 1-7 letters or digits beginning with a letter.

The format of SKlPF for files is:

SKIPF(n,lfn,F)

n Number (decimal) of files to be skipped forward; cannot be zero.

60493800 C 4-45

lfn Logical file name of multi-fIle, 1-7 letters or digits beginning with a letter.

F Indicates fIles are skipped, not records.

USER EDITLIB EXAMPLES

1. MTCREAT.
REQUEST(MTLIB,LO,YSN=14444)
REQUEST(SORCEFL,MT,YSN=14445)
FTN.
EDITLIB(USER)
7/8/9

Requests 7-track tape to hold new library.
Requests tape with previously assembled source programs.

FORTRAN Extended program to be compiled, program name HOOD.
7/8/9
LIBRARY(MTLIB,NEW)
REWIND(SORCEFL)
REWlND(LGO)
ADD(*+SHASTA,SORCEFL)
SKIPF(3,SORCEFL)
ADD(HOOD,LGO)
ADD(* , SORCEFL)
FINISH.
ENDRUN.
6/7/8/9

Initiates construction of new library MTLIB.
Rewinds binary input me.
Rewind binary output from FORTRAN Extended program.
Adds programs from beginning of me through SHASTA.
Skips 3 programs on file.
Adds program from LGO me.
Adds all remaining programs on SORCEFL.
Terminates library construction.
Stops execution.

Job MTCREAT creates a sequential user library on a tape.

2. MTCHNGE.
REQUEST(MTLIB,LO,YSN=14444)
REQUEST(DIRECT ,MNT ,VSN=12000)
EDITLIB(I=DIRECT)
6/7/8/9

Job MTCHNGE modifies the library created above. Directives for EDITLIB are on tape 12000.

3. BIRDS. Job statement.
REQUEST(BIRDLIB, *PF) Requests permanent file· device for library.
ATTACH(GULLS,GULLSPF ,ID=PETERSO}l) Attaches permanent file as lfn GULLS.
ATTACH(WRENS,WRENSPF,ID=PETERSON) Attaches permanent file as lfn WRENS.
EDITLIB(USER) Calls EDITLIB.
CATALOG(BIRDLIB,BIRDLIBRARY,ID=PETERSON) Catalogs library as permanent file.
7/8/9
LIBRARY(BIRDLIB,NEW) Establishes library name.
ADD(*,GULLS) Adds all files from GULLS.
ADD(CACTUS-HOUSE,WRENS) Adds all fIles from WRENS except CACTUS through HOUSE.
FINISH. Terminates library.
ENDRUN. Stops execution.
6/7/8/9

4-46 60493800 A

Job BIRDS creates a random format library file and makes it permanent. Binary input files exist on
permanent ftles GULLSPF and WRENSPF.

4. CHECK.
EDITLIB(USER)
7/8/9
ENDRUN.
LIBRARY(OLDLIB,OLD)
DELETE(SP ARROW)
REPLACE(HAWK,INPUT ,FLO=O)
SETAL(SHRIKE,777)
SETFLO(ROBIN, 1)
SETFL(CREEPER,55000)

FINISH.
6/7/8/9

Stops execution here.

Job CHECK uses EDITLIB to check syntax of all directives, but does not execute.

EXECUTE (INITIATE EXECUTION)

EXECUTE causes execution of a loaded program. It is a loader control statement. See the LOADER reference
manual for additional information. EXECUTE terminates a load sequence.

The format of EXECUTE is:

EXECUTE.

EXECUTE normally follows a LOAD control statement.

EXIT (PROCESS AFTER FATAL ERROR)

EXIT establishes processing to occur if a fatal error is terminating the job. In the absence of an EXIT control
statement,· job termination occurs as described in section 2. When EXIT is present, processing might resume,
depending on the type of error and the parameter on the EXIT control statement.

Certain conditions always cause abrupt termination of a job:

Request from the operating system or computer operator to terminate job and inhibit all output (KILL
command)

Request from operator to transfer job from central memory back into input queue (RERUN command)

60493800 A 447

I

Error on job statement

Checksum error during job input

When other types of otherwise fatal errors occur, the operating system searches the control statements for
EXIT. The following terminating conditions result in this search.

Job uses all execution time allotted

Arithmetic error unless negated by a MODE control statement

Peripheral processor encounters improper input/output request

Central processor program requests job termination

Operator request to drop job (DROP command)

ECS parity error occurs

Control statement error, other than on job statement

With the exception of control statement format errors, the above conditions can be reprieved within COMPASS
or FORTRAN. Extended programs, as indicated by the RECOVR macro.

The format of EXIT is:

All parameters are optional.

omitted Execute the following control statements when a non-special fatal error occurs.

C Execute the following control statements unless a non-special error has occurred.

u Execute the following control statements if a special fatal error has not occurred.

S Execute the following control statements when either a special or non-special error occurs.

More than one EXIT control statement can appear in the job stream.

System action after an error occurs depends on the next EXIT control statement in the job stream, if any,
as noted in the chart below. The chart also shows system action when an EXIT control statement is encoun­
tered during normal job step advancement.

4-48 60493800 C

Error Condition

Special error occurs
(see list below)

Other error occurs

No error, but EXIT
encountered

EXIT.

Skip to EXIT,S
or end job

Resume
processing
after EXIT

End job

The special error conditions are:

Next EXIT Control Statement

EXIT,C.

Skip to EXIT,S
or end job

End Job

Resume
processing
after EXIT,C.

EXIT,U.

Sldp to EXIT,S
or end job

Resume
processing
after EXIT,U.

Resume
processing
after ,EXIT ,U.

ABORT macro within central processor program that specifies NODUMP or S.

Control statement format errors.

EXIT,S.

Resume
processing
after EXIT,S.

Resume
processing
after EXIT,S.

End job

No EXIT

End job

End job

End job

Attempt to load an object program which resulted from containing assembly or compilation errors.

If necessary, the system increases the CP time limit, 10 time limit or mass storage limit to provide an installa­
tion defined minimum of time and mass storage for EXIT processing. No limit is increased more than once
in a job.

EXTEND (PERMANENT FILE EXTENSION)

EXTEND makes permanent information written at the end of an existing permanent me. Information can be
written at the end of any attached permanent file; in the absence of an EXTEND or ALTER control statement,
however, the added information disappears when the job terminates. EXTEND can be issued with the file at
any position.·

EXTEND can be issued by any job that attaches the file with extend permission or by the job that catalogs
the me. The newly added information acquires the privacy controls of the existing permanent file. No
boundary exists between the original information and the new information.

The format of EXTEND is:

EXTEND,lfn.

lfn

60493800 A

Logical me name of permanent file attached with extend permission, 1-7 letters or
digits beginning with a letter.

4-49

GETPF (,ATTACH PERMANENT FILE FROM LINKED MAINFRAME)

GETPF attaches a permanent fIle to a job, as long as parameters specified on the GETPF control statement
establish the right to use the file. GETPF differs from the ATTACH control statement in that:

GETPF creates a local copy of a file; ATTACH manipulates the file itself.

GETPF can obtain a copy of any permanent file residing in a permanent file default set. ATTACH can
access only permanent files which reside on a device directly connected to the mainframe on which the
job is executing.

The format of GETPF is:

GETPF)fn,pfn,ID=name,AC=act,EC=ec, { ~~:y } ,MR=m,PW=pw,RW=p,ST=mmf.

The first parameter establishes the logical file name. Parameters lfn and pfn are required in the order
shown; all other parameters are order independent. ID and ST are required. GETPF can be continued:
if a period or right parenthesis does not. appear at the end of the parameter list, column 1 of the next
statement is considered a continuation of column 80.

lfn

pfn

ID=name

ST=mmf

Logical file name, 1-7 letters or digits beginning with a letter. If omitted, the first
seven characters of pfn establish lfn. .

Permanent file name by which the me is known in the permanent me catalog, 1-40
letters or digits. Required.

ID parameter by which the file was cataloged. Required unless the file was cataloged
with ID=PUBLIC.

System on which file is cataloged, 3 characters.

See the ATTACH control statement for the remaining parameters.

GETPF alway~ sets MR=1.

The file referenced by a GETPF must reside on the permanent file default set of the mainframe specified. A
copy of the fI1.e is transmitted to the mainframe on which the job is executing at the time the fIle is opened.

Any modifications made to the fde during the job are a part of the local me copy, not of the original
permanent file.

LABEL (TAPE LABEL SPECIFICATION)

LABEL writes or checks VOLI and HDRI labels on tapes. In addition to substituting for a REQUEST control
statement for a single me labeled tape, LABEL can be used to position within a multi-fIle set.

In most instances, LABEL is the first reference to a file in a job, unless it is preceded by a VSN statement
indicating the volume serial number of the resident volume. For a single file volume, a REQUEST is not
needed, although a REQUEST followed by LABEL is valid and does not create an error· condition. If a

4-50 60493800 A

REQUEST statement follows the LABEL statement, duplicate ftle names ate generated; and the job terminates
since the LABEL program issues a REQUEST function to obtain the equipment. For labeled multi-file volumes,
a REQUEST establishing the multi-ftle set must precede the LABEL statements that write the header labels for
various files in the set.

The label program issues an OPEN function to read or write the file label. Contents of the label are copied to
both the system and job dayfiles. When label fields are not consistent with the information supplied on the
LABEL control statement, the operator is notified; the operator then can mount another tape and have its
label checked or can authorize the job to continue with the existing tape.

The format of LABEL is:

LABEL,lfn, {~}, { ~ } , { ~g~NG }, IB,D=d,F=f,N=n,X=x,L=z,V=V,E=e,T=t,C=c,M=m,P=p,VSN=vsn.

The first parameter must be the logical file name. An R or W parameter is required. The remaining
optional parameters are order independent. LABEL can be continued; if a terminator does not appear
on the first statement, the next is assumed to be a continuation of the first.

Default parameters cause a single ftle header in ANSI format for a 7-track tape in SI format. Any other
label or data format to be written, or a tape to be read, must he. declared explicitly.

9-track tape can be selected only by giving either a 9-track density parameter (HD, PE, or GE) or a code I
conversion parameter (US or EB).

Read or write:

R

W

Label type:

y

z

absent

Write ring:

RING

NORING

absent

60493800 C

Label is to be read and compared with parameters on the LABEL control statement.
When R is used, the tape can be a candidate for auto-assignment by label name~

Label is to be written.

3000 series label.

Label conforms to standard label of previous operating system. Character 12 of the
VaLl label specifies data density; otherwise Z labels are identical to U labels.

Standard label conforming to ANSI.

Write-enabled ring required in tape.

Write-enabled ring prohibited in tape ..

Parameter is set to installation-defined value.

4-51

I

I

Noise brackets:

IB Inhibits system noise brackets. Recommended if tape is to be read on another system.
Noise brackets always are inhibited on phase encoded tapes.

Tape characteristics:

D=d Density. If omitted, density declared or implied by REQUEST prevails. For
7-track tapes:

LOt 200 bpi

HI 556 bpi

HY 800 bpi

For 9-track tapes, the d parameter determines density for writing only; data is always
read at the recording density.

HD

PE
GEtt

800 bpi

1600 cpi, phase encoded

6250 cpi, group encoded

F=f Format of the file data. Default is SI format.

S

Lttt

S tape format·

L tape format

N=n Code for conversion of 9-track tapes only. Default is installation defined.

US ASCII code

EB EBCDIC code

X=x Disposition of tape.

IU Inhibit physical unload

SV Unload tape at end of job; notify operator to save

CK Checkpoint dump written on tat:e

CI Checkpoint dump and inhibit physical unload

CS Checkpoint dump and save

Label fields:

L=z Label name: 1-17 characters for ANSI or Z labels; 1-14 characters forY labels. Default
value is spaces.

V=v Label field. Volume number specifying volume sequence in volume set. 1-4 digits for
ANSI or Z labels; 1-2 digits for Y labels. Default is 0001 for ANSI or Z labels, 01
for Y labels.

t200 bpi can be read but not written by CDC 667 Tape Drives.

Itt 6250 cpi density is supported only on CDC 679 GCR Tape Drives.
ttt L format is supported only on 7-track tape drives and CDC 669/679 9-track Tape Drives.

4-52 60493800 C

E=e

T=t

C=c

M=m

P=p

VSN=vsn

Label field. Edition number specifying version of file. 1-2 digits. Default is 00.

Label field. Number of days fIle is to be retained, 1-3 digits. Default determined by
installation. 999 is permanent retention. A retention period greater than 364 days
results in the assignment of T=999.

Label field. Creation date, in format of 2 digits for year, 3 digits for day.
Default is current date.

Label field. The operating system uses this parameter to establish that the current
LABEL function applies, to a member of a multifile set; m is the logical multifile set
name as it appears on the REQUEST statement for this set, and it must be present
for all LABEL statements referencing members of this multifile set. When the label is
written on tape, the multifile field does not contain the logical set name; it contains
the VSN for the first volume of the multifile set.

Label Held. Position number indicating me within multifile set, 1-4 digits. Default is
0001. Not defined for 3000 series labels.

Volume serial number of 1-6 characters used to identify the tape for automatic assign­
ment. Parameter can appear on VSN statement rather than LABEL statement. A VSN
of SCRATCH or 0 specifies a scratch tape,

LABELMS (DEVICE SET LABELING)

LABELMS labels a device before it is used in a device set, places the volume serial number in the label, and
establishes the type of access to the device. In addition, LABELMS can be used optionally to inhibit pre­
allocation of space for customer engineering diagnostics, to specify information for subsequent access to the
device, and to record known flaws on a device so that such areas. are not accessed.

The format of LAB ELMS is:

LABELMS,DT=eq,mode,I=lfn.

All parameters are optional.

DT=eq

mode

I=lfn

60493800 C

Device type. If DT is omitted, the operator can assign any device type. The value of
eq is a device mnemonic: for example, A Y for 844-21. (See section 6 for list of device
types.) Member devices subsequently added by the ADDSET statement must have the
same device type as the master device.

Recording mode for an 844 disk pack. Default is defined at installation time.

HT Half tracking
FT Full tracking

Logical file name for input directiws containing allocation and flaw information. If I
is specified but not equivalenced, file INPUT is used: otherwise, no directives are
expected. Consequently, default allocation information is used and the disk is presumed
to be free of flaws. If this parameter is specified, DT must also be specified.

4-53

I

Input directive formats are as follows:

All values in the directives are assumed to be octal unless suffixed with a D.

Each directive must begin in column 1 and end with a valid terminator. Valid control separators must
appear between the elements of a directive. Successive allocation directives must refer to successive por­
tions of a device; allocation directives can be intermixed with flaw directives. A maximum of eight
allocation directives is permitted.

Allocation directives: Aas,Rpru,Nrbs.

Flaw directives:

as

pru

rbs

Device

841

844-21
844-41

{
Ttn,Ccn,Ssn.
Ttn,Ccn,Sfsn-Isn.

Allocation style with limits of 0 to 77 (octal); default is as = O. The user can request a
specific allocation feature, such as directing a file to a specific portion of a device
having a particular record block size and/or recording technique.

Number of PRUs per record block. The pru value must be greater than or equal to 1/32
of the PB (physical block) size and less than or equal to 32 times the PB size.
PB size depends on the device, as shown below. For compatibility with 844 density
packs, the following pru values are listed. These values apply, regardless of whether or
not the installation is using the 844 double density feature.

(RB size) ~70B: 2,4,7,10,16,34,70
(RB size) > 70B: (2n-l)*70+ 1 S pru value $ 2n*70, where n=I,2 ... 20B

Number of record blocks in the RBR for this device or portion of device. The RBR,
maintained by the operating system in central memory, contains information indicating
its allocation style and the status (available for assignment) of all record blocks governed
by this RBR. The limits of rbs are 1 to 7777 (octal). Default depends on the device
as shown below.

tn

cn

sn

fsn

lsn

PB Size
(PRUs)

70
160
160

Track number I
Cylinder number Limits depend on device as shown below

Sector number

First sector number }
Indicates several contiguous flaw sectors

Last sector number

RB Size
Default

(PRUs) rbs Default tn Limits cn Limits

70 1750 o to 23 o to 307

70 6240 o to 22 o to 632

70t 6240t o to 22 o to 1466

sn Limits

o to 15

o to 27
o to 27

All values listed above are octal.

tTo create an 844-41 (double-density) pack with an RB size of 70B, two allocation directives must be

input to LABELMS. 844-41 's require two RBRs when the RB size is 70B.

4-54 60493800 D

NOTE

User packs cannot have the number of record blocks (RBs) greater than the installation­
defined maximum number of record blocks to be used for private devices. All members
of a user device set must have identical allocation directives specified when the devices
are labeled.

For 844-21 (A Y) and 844-41 (AZ), the flaws recorded on the device in the utility flaw map (UFM) are read
by LABELMS (except during deadstart) and added to the flaws supplied in the input file. If the pack does not
contain the flaw map, the following informative message is written to the job dayfile:

ERROR IN READING UFM

During deadstart. LABELMS obtains a complete set of flaws from IRCP through CMR-inc1uding the flaws
from the utility flaw map read by IRCP.

LIMIT (LIMIT MASS STORAGE)

LIMIT limits the amount of rotating mass storage that is assigned to a job. Normally, a job is assigned as
much mass storage as it needs; however, a user might want to limit the maximum mass storage that should
be assigned, for example, during a debug phase when large amounts of output would indicate program errors.
Any time mass storage in excess of the specified limit is required, the job terminates.

The format of LIMIT is:

LIMIT,n.

n Number (octal) indicating the maximum number of blocks that can be allocated to the
job. Blocks are 4096 60-bit words. The n parameter is required.

The value of the LIMIT parameter should anticipate both the number and size of files that exist at one time.
The information in the mass storage accounting message in the dayfile might be helpful in determining a limit
for the LIMIT control statement. Note that the dayfIle message is in decimal words, but the LIMIT argument
is in blocks of 4096 words. The mass storage statistic is issued only if a LIMIT control statement has been
executed by the job or if the installation has set a non-zero default mass storage limit. Generally, very small
limits should be avoided, since the system allocation of one record block, at minimum, for each file can exceed
the limit established even though each fIle is small.

Record blocks are defined at each installation, usually with different sizes of blocks for different mass storage
devices. A disk, for example, might have record blocks of 3200 words. A statement specifying LIMIT(2)
would, in this instance, cause job termination when a third file is opened, since 3 times the record block size
is more than the stated limit of 8192 words.

Mass storage occupied by the INPUT file or attached permanent fIles is not involved in the total mass storage
allocation for LIMIT calculations. Any file evicted from mass storage decreases the count of words allocated.

60493800 C 4-55

I

LISTMF (LIST LABELED TAPE)

LISTMF lists the HDRI labels of files in a multi-file set. The utility is valid only for tape fIles with ANSI
standard labels. All volumes in the set are processed with a single utility call. The listing appears on the file
OUTPUT.

A REQUEST control statement defining the multi-file set is required before LISTMF is called.

The format of LISTMF is:

LISTMF ,M=mfn,P=p.

M=mfn Multi-file name of the set, as declared on the REQUEST control statement. Required.

P=p Position of file at which listing is to begin; 1-3 digits. The first file in the set is
position 1. Default is 1.

The multi-file set is rewound at the be'ginning of LISTMF execution, then positioned to the beginning of the
file indicated by the P parameter. Listing of header labels stops when the end of the set (EOF label followed
by multiple tape marks) is reached. No further positioning occurs.

LOAD (LOAD PROGRAM)

LOAD loads a fIle into memory in anticipation of a call for execution of loaded programs. LOAD can initiate
a load sequence or be part of an existing load sequence; it does not terminate a load sequence. An EXECUTE
control statement, or, in the case of overlay preparation, a NOGO control statement, would normally terminate
the load sequence.

LOAD is defined by the loader, not the operating system. See the LOADER reference manual for further
details.

The format of LOAD is:

LOAD,lfnl/r,lfn2/r,

More than one parameter can be specified when all files contain relocatable programs. Only one param­
eter can be specified when the file contains an absolute program.

lfn

r

Logical fIle n~e of me containing binary executable code, 1-7 letters or digits beginning
wi th a letter.

Rewind indicator:

R Rewind file prior to loading. Rewind of the file INPUT rewinds to the
beginning of the control statements; no skipping of control statements -
occurs.

NR Inhibits rewind prior to loading.

Loading from the file terminates when a partition boundary, or end-of-information is encountered, or when two
consecutive 7/8/9 cards are encountered in an image of a job deck.

I 4-56 60493800 C

LOADPF (LOAD PERMANENT FILE TO TAPE)

LOADPF loads permanent files that have been dumped to tape. All (or a selected portion of) files on the
tape can be loaded. An optional directive file specifies individual files to be loaded. Multiple copies of
LOADPF can execute at the same time. A job can access a file as soon as it is entered into the permanent
file tables. For each cycle loaded, LOADPF makes an output listing entry that contains the permanent file
name, owner ID, cycle number, date of last dump, and a comment.

Before LOADPF is called, a REQUEST or LABEL control statement must define a tape file named DUMTAPE
in S format with an existing label. If the dump tape for a file to be loaded contains more than one file with
the same permanent file name, cycle number, and ID name, a message is sent to the operator and the file is
ignored. New cycles of a permanent file will not be loaded if the passwords of the tape cycle disagree with the
existing cycle.

NOTE

Files purged between a full DUMPF and several change dumps (DUMPF ,DP=C) are reloaded
when both the change and full dumps are reloaded.

The format of LOADPF is:

{
I=lfn}

LOADPF ,LP=x,LF=lfn,CL,SN=setname,VSN=vsn,lD=name,PF=pfn,CY=cy, I

All parameters are optional and order independent. Only one LP parameter can be specified. If a
terminator does not appear at the end of the parameter list, column 1 of· the next card or line is
considered to be a continuation of the LOADPF parameter list.

LP=x

A

R

P

x

°
LF=lfn

CL

SN=setname

VSN=vsn

ID=name

60493800 D

Load all files. Existing files are not replaced unless the file is incomplete or not disk
resident. Default.

Replace existing files. Both X and R can be specified in the form LP=X,R.

Load archived files (files with entries in permanent file tables but -file residence on tape).

Do not load expired files.

Permanent file dump tape is in SCOPE 3.2 or 3.3 format. If LP=O is not specified, the
tape is assumed to be a SCOPE 3.4 permanent file dump tape. The ° option can be
used with other LP parameters in the form LP=R,O,X.

Name of file on which listing is to appear, 1-7 letters or digits beginning with a letter.
Default is OUTPUT.

Complete list option selected. All files on the dump tape are listed. If CL is omitted,
only loaded files are listed.

Name of device set to which files are loaded, 1-7 letters or digits beginning with a letter.
Master device of this set must be previously mounted.

Volume serial number of the device onto which permanent files are loaded, 1-6 letters or
digits with leading zeros assumed. Parameter SN must also be included, and the master
device of the set must be previously mounted.

Load files with this owner.

4-57

I

PF=pfn Load files with this permanent me name. ID=owner is also required.

CY=cy Load cycle cy of rue specified by PF and ID. CY is ignored and the load continued if
this cycle is not found, or if PF and IDare not specified.

I=lfn Logical file name of directive file, 1-7 letters or digits beginning with a letter. If I is
specified but not equivalenced, file INPUT is used.

A group of mes to be loaded can be identified by name and owner in a directive record. When input direc­
tives are selected, only parameters SN and CL are valid on the LOADPF call. Parameters on directives are
order independent. CY is optional. Directive format is:

PF=pfn,CY =cy ,ID=name

LOADPF EXAMPLES

1. JOB 1.
REQUEST(DUMT APE,HY ,S,E)
LOADPF.
6/7/8/9

This job loads all mes on the tape unless LOADPF finds the owner ID, permanent me name, and
cycle number combination already in the system; such files are skipped.

2. JOB2.
REQUEST(DUMT APE,HY,S,E)
LOADPF(LP=X)
6/7/8/9

This job loads all non-expired permanent files from tape.

3. JOB3.

4-58

REQUEST(DUMT APE,HY,S,E)
LOADPF(pF=ST ARTREK,ID=SPOCK)
6/7/8/9

All cycles of the permanent file STARTREK with owner ID SPOCK are loaded unless one of the
following conditions arises:

The permanent file name/owner ID combination already exists in the system with different
passwords.

A duplicate cycle number is encountered.

The permanent file name/owner ID combination already has five cycles cataloged.

60493800 C

4. J084.
REQUEST(DUMT APE, ...)
LOADPF(I)
7/8/9
PF=PASSERIFORMES,CY=21,ID=VEERY
PF=ANATINAE,ID=GADWELL
PF=PROCELLARIIFORMES,ID=FULMAR
6/7/8/9

This job loads the specified permanent fIles from tape.

MAP (PRODUCE LOAD MAP)

MAP determines the extent of the load map produced for all subsequent programs loaded in central memory.
When MAP is omitted, an installation default determines the type of map.

Output from a load map appears on the file OUTPUT. It includes items such as the type of load, location of
programs, common blocks and tables, and entry points. Load maps of programs on the system library, such
as compilers or assemblers, are never produced. See the LOADER reference manual for an explanation of all
items in the load map.

The MAP option selected remains in effect until another MAP control statement changes the option or the
job ends.

The format of MAP is:

{
OFF}

MAP, FULL.
PART

OFF No map is produced.

FULL Full map is produced.

PART Map has all items except entry point addresses.

The effect of a MAP can be overridden for a particular load sequence by the MAP option of the loader statement
LDSET (see the CYBER Loader Reference Manual).

60493800C 4-59

I

MODE (SUSPEND ERROR EXIT)

MODE specifies the error conditions that abnormally terminate the job. Normally, a job terminates when any of the
following CPU program errors are detected:

Reference to an operand (any number used in a calculation) that has an infmite value.

Reference to an address outside the field length of the job in central memory or ECS; such an
address can be generated during assembly if a non-existent location is~ referenced or inadequate field
length is set.

Reference to an operand for floating point -arithmetic which has an indefinite value

When a selected error condition is detected, the job terminates. When an error condition not selected by MODE is
detected, job processing continues and no error message is issued. A MODE selection remains in effect until another
MODE control statement is executed or the job ends.

The format of MODE is:

MODE,m.

m CPU program error exit conditions 0-7 (octal). If omitted, 7 is assumed.

o Disable CPU program error exit; all errors allow job to continue

Address is out of range

2 Operand is infinite

3 Both I and 2 remain in effect

4 Floating point number of indefinite value

5 Both I and 4· remain in effect

6 Both 2 and 4 remain in effect

7 1 and 2 and 4 remain in effect

For example, a MODE, 5. statement directs the system to continue processing even if an infinite operand is
encountered. If an address is out of range or a floating point number of indefinite value is encountered, the
job terminates. A control statement MODE,7. is equivalent to a job without a MODE control statement.

• 4-60· 60493800 C

MOUNT (ASSOCIATE DEVICE SET)

MOUNT associates a device set and its members with a job. MOUNT is a logical operation; if the device is
physically available, no operator intervention is required. If the device is not physically available, the device
name is placed in an operator display, and the job is swapped out until the device is mounted.

When the master device is mounted, the device set tables are read into the system and all mes and member
devices become logically accessible to the job. The master device must remain mounted while the associated
device set is in use. When the master is mounted, the system issues a MOUNT for other member devices as
needed. The user also can issue a MOUNT for a member device.

The format of MOUNT is:

Parameters VSN and SN are required; mode is optional. All parameters are order independent. I MOUNT ,VSN=vsn,SN=setname,mode.

VSN=vsn Volume serial number of device to be mounted, 1-6 letters or digits with leading zeros
assumed.

SN=setname Name of device set to which this device belongs, 1-7 letters or digits beginning with a letter.

mode Recording mode for an 844 disk pack. Default is defined at installation time.
HT Half tracking
FT Full tracking

PAUSE (OPERATOR INTERFACE)

PAUSE inserts a formal comment into the job dayftle and stops the job until the operator acknowledges the
comment. PAUSE should not be uSed unless communication with the operator is essential. The COMMENT
control statement allows messages to be inserted into the dayfile without the need for operator response.

The format of PAUSE is:

PAUSE. comment

Endi1).g punctuation is not required.

comment String of 74 characters to be displayed for the operator. Any characters can be specified,
including those otherwise used as punctuation. Characters with display code values
greater than 57 are displayed as blanks.

All eighty characters (PAUSE plus message) are displayed for the' operator. A message longer than 74 charac­
ters can be sent by using a second PAUSE control statement, but each statement requires operator action.

The operator acknowledges the PAUSE message by a GO, DROP, or KILL command that continues, drops,

or aborts the job, respectively.

60493800 C 4-61

I

PURGE (REMOVE PERMANENT FILE)

PURGE removes the permanent status of a file. The file remains as a local file for the job if the file is being
accessed on the mainframe at which the job is executing, if the file is not archived, and if the RB parameter is
not specified. Control permission is required to purge a file.

PURGE affects only one cycle of a permanent fIle. If it is the only cycle of the rue, the permanent file name
is removed from the permanent file tables. A subsequent CATALOG with the same permanent file name and
ID would be an initial CATALOG.

The format of the control statement and subsequent me permissions depends on whether the fIle is already
attached to the job. If the full format is specified when the file is attached, all parameters except lfn and RB
are ignored.

If the rue is attached to the job, the format of PURGE is:

PURGE,lfn,RB=I.

lf the file is not attached to the job, the format of PURGE is:

PURGE,lfn,pfn,ID=name,AC=act, {Lyc=n } ,EC=ec,MR=m,PW=pw ,RB=I ,RW=p,SN=setname,ST=mmf.
C =cy

Only lfn is required as long as the file is attached to the job. Parameters other than lfn and pfn are
order independent. PURGE can be continued: if the parameter list is not terminated by a period or
right parenthesis, column 1 of the next stateme~t is considered to be a continuation of column 80.

lfn

RB=l

ST=mmf

Logical file name by which file is attached to the job, 1 7 letters or digits beginning
with a letter.

Record block conflict. Applicable only when the record block conflict flag is set in
system tables to indicate that storage allocation for the file is in conflict with mass
storage allocation elsewhere. If this parameter is used when the conflict flag is set,
the local file has all permissions removed except control permission and the mass
storage associated with the me is not released when the file is released to the system.
The AUDIT utility reveals the presence of mes with storage conflict.

System on which file is cataloged, 3 characters. If the me is not cataloged on the
mainframe at which the job is executing, a job is generated on the specified mainframe
to purge the me. If this parameter is specified, any SN parameter is ignored.

See the ATTACH control statement for the meaning of remaining parameters.

RECOVER (DEVICE SET MAINT£NANCE)

RECOVER validates a device set and reconstructs tables whenever the integrity of a device set is in question.
It scans critical disk tables of a device set to verify and recreate each. Any errors encountered during the
recovery process are noted in the OUTPUT file. The RECOVER control statement is not executed if this
job or any other job has issued instructions to mount the device set.

4-62 60493800 A

The format of RECOVER is:

RECOVER,sN=setname,VSN=vsn.

Parameters are required and order independent.

SN=setname Name of device set to be validated or reconstructed, 1-7 letters or digits beginning with
a letter.

VSN=vsn Volumesetial number of device set master device, 1-6 letters or digits with leading zeros
assumed.

In a multi-mainframe environment the permanent file could be destroyed if RECOVER is executed when one
of the mainframes has the master mounted. Therefore, the system aborts the request unless called from the
console by an operator type-in.

REDUCE (REDUCE FIELD LENGTH)

REDUCE decreases the central memory field length assigned to a job to the amount of memory needed by
the program currently loaded. It also restores dynamic field length management by the operating system that
the job previously inhibited through execution of an RFL control statement or through use of a CM param­
eter on the job statement. REDUCE should be used whenever the job no longer requires special field length
handling.

The formst of REDUCE is:

REDUCE.

RENAME (CHANGE PERMANENT FILE TABLE)

RENAME changes values of parameters in the permanent file manager tables. Parameter values originating
from a prior RENAME or original file catalog can be deleted or changed to different values and new param­
eters can be added. RENAME affects only the parameters specified on the control statement; other param­
eters remain as they were.

Prior to issuing RENAME, the job must attach the file with read, extend, modify, and control permission.

The format of RENAME is:

RENAME,lfn,pfn,ID=name,AC=act,CN=cn,CY=cy,EX=ex,MD=md,RD=rd,RP=rp,TK=tk,XR=xr.

Only the lfn parameter is required; it must be the first parameter. All other parameters are optional
and order independent. RENAME can be continued: if the parameter list is not terminated by a
period or tight parenthesis, column I of the next statement is considered to be a continuation of
column 80. Two commas can follow lfn when pfn is not changed.

Specifying the parameter name and an equals sign without a follOWing parameter value removes the
existing value for that parameter.

60493800 A 4-63

I

lfn

RP

Logical filename of attached permanent file, 1-7 letters or digits beginning with a letter.
Required.

Retention period, 0-999. Applies to date of original CATALOG, not to date of RENAME.

See the CATALOG control statement for the meaning of remaining parameters.

Any change to the permanent file name, ID, or passwords of any cycle of a file causes the same change to be
made for all cycles of the file. Consequently, RENAME cannot change the permanent me name, ID, or pass­
words if any cycle of the file has been dumped or archived to tape. If the PFN/ID are being changed and a
file already exists with the proposed PFN/ID, the PFN/ID change will not occur; a nonfatal error message is
issued.

REQUEST (ASSIGN FILE TO DEVICE)

REQUEST requests assignment of a me to a particular device. Since control statements are processed in order
of appearance, the REQUEST statement for a particular file must precede the control statement that executes
the program referencing that file. Otherwise, the file is sought or written on a public scratch device when it
is referenced.

REQUEST is most commonly used with permanent files, magnetic tapes, and private device sets, but it can be
used to cause file assignment to any public device or unit record equipment. Files are assigned to public disk
packs by a REQUEST or by system default; but to ensure that a file is assigned to a permanent file device, a
REQUEST statement with a *PF parameter should be used.

When a REQUEST control statement is encountered, job processing might halt for operator action or continue
with operating system action, depending on the form of the parameter specifying device type; and, for mag­
netic tape, the installation tape assigning options.

The general form of REQUEST is:

REQUEST,lfn,dt,parameters.

Parameter lfn is required and must be the first defined; all other parameters are optional and order
independent.

lfn

dt

parameters

Logical file name by which file will be known throughout the job, 1-7 letters or digits.
beginning with a letter. lfn beginning with ZZZZZ is reserved for the system.

Device type mnemonic plus other dt parameters to further describe equipment requested.
If the user specifies an optional device type parameter which is unique to a device type
(for example, the GE parameter for a 9-track tape), the device type mnemonic need not
be specified. A preceding asterisk allows assignment of devices without operator action
if possible. An asterisk is implied for mass storage devices.

Optional parameters.

The optional device type descriptors depend on the category of equipment involved. Details of parameters for
REQUEST are discussed separately in relation to files on the following devices:

Magnetic tapes (7- and 9-track) including multi-file sets

4-64 60493800 D

Unit record devices such as card reader and line printer

ECS

Public devices including those used for permanent fIles

An asterisk preceding the device type mnemonic causes the operating system to attempt to assign the device
without operator action. Automatic assignment is attempted on mass storage devices regardless of whether the
asterisk is specified. The tape assigning options available make the * redundant for magnetic tape requests,
but it can be used; however. * cannot be used if two units are requested with the same control statement
or a multi-file set is involved. If * is used for unit record devices, the REQUEST control statement appears
on the operator display for manual assignment. The operator must then make the unit physically ready and
logically assign it to the job by entering a command on the console keyboard. See Unit Record Device
Request description which follows in this section.

When sufficient information is given on the REQUEST control statement, the operating system assigns the
device to the job without operator action. For rotating mass storage devices, automatic assignment is
attempted whether or not the asterisk precedes the dt parameter. For other device requests, operator action
is required if an asterisk does not precede the dt parameter. If dt is not declared, the operator can assign
any device. For tape request, a VSN parameter is used to locate and to assign the tape if it is mounted.

The operating system compares the device assigned by the operator with the request; any discrepancy is
reported to the operator. An additional operator command must be given if the dt parameter on the control
statement is to be overridden by manual assignment. Conflicts must 'be resolved by the operator.

TAPE FILE REQUEST

The REQUEST control statement can describe both physical and logical characteristics for magnetic tape files.
When only the logical file name and magnetic tape device type MT are specified, the file, by default, becomes
a 7-track, unlabeled tape with SI format written at installation density, or read at written density; and
installation declarations for automatic unloading are honored. Any other use, such as for checkpoints or
multi-file sets, or characteristics of the file must be specifically declared.

The MT or NT device type parameter can be prefixed by an asterisk or a 2. The asterisk is applicable only
when compatibility with previous operating systems is considered. The asterisk prefix results in assignment of
a scratch tape to the file. However, if a non-scratch VSN has been specified also, it overrides the scratch
designation. If REQUEST includes parameter E, a scratch tape is not assigned. Depending upon the selection
of installation options, the operating system attempts to assign the tape to a job automatically using a VSN,
or label name parameter. Operator assignment is necessary only when automatic assignment attempts are
unsuccessful.

If either a 7- or 9-track tape is acceptable, an MN parameter can be used in place of MT or NT. The
resulting tape has default density. If the request includes at least one device type descriptor which is unique I
to magnetic tapes (such as the RING parameter), neither the device type nor the ,density need be specified.

A 2 prefix to MT or NT causes two tape units to be requested from the operator; they are used in the order
assigned. Tape requests using the 2 prefix cannot be auto-assigned. When the tape on the first unit reaches
end-of-volume, the system begins processing the tape on the second unit while the tape on the first unit is
rewound and unloaded. When the tape on the second unit reaches end-of-volume, the system returns to the
first unit, which should have been mounted in the interim with a new tape. The tape on the second unit is
rewound and unloaded. This alternating process is repeated as long as the file is referenced. The operator
must ensure the proper tape mounting sequence.

60493800 D 4-65

7-TRACK TAPE PARAMETERS:

REQUEST.lfn.MT. {~}. {~~}. {U. GH~s}'{ ~~}. {~~N~NG} .IB.NR.VSN=vsn.

Logical file name:

If the MF parameter is not specified, Ifn is the logical file name of 1-7 letters or digits beginning
with a letter.

If the MF parameter is specified, this parameter is a multi-file set name of 1-6 letters or digits
beginning with a letter.

The multi-file set name cannot be used in any input/output statement except as the M parameter in
a LABEL statement or POSMF macro.

7-track identification:

A declaration of LO, HI, or HY is sufficient to define the device type as MT. If MT is absent. LO.
HI or HY can be prefixed by a 2 if two units are required.

Density:

HI

HY

absent

File disposition:

IU

SV

absent

200 bpi density

556 bpi density

800 bpi density

Density is set to an installation defined value if initial use is out I'u t. I f initial use of
a label tape is input, the density of the label is determined automatically; however, it
is recommended that density be specified whenever known, and that density be used to
read both the label and the data, except as indicated under Z below. If initial use of
an unlabeled tape is input, the density is set to an installation declared value.

Any physical unload of the tape file in a context other than reel swapping is inhibited.
The IV parameter does not inhibit logical actions associated with UNLOAD or RETURN.
IV is recommended when a scratch tape or input tape is requested that is to remain
mounted and ready.

The tape file is unloaded at job termination, and the operator is notified that the tape
is to be saved.

Action performed at end-of-job is option of the installation.

tCDC 667 Tape Vnits can read but not write at 200 bpi. If the installation has both 667 and 607/657 units.
jobs writing at 200 bpi must not be assigned 667 tape units.

4-66 60493800 A

Tape security:

RING Write-enable ring required in tape.

NO RING Write-enable ring prohibited in tape.

absent RING/NORING is set to an installation defined value.

Volume serial number identification:

VSN=vsn

absent

Volume serial number of the tape volume, 1-6 letters or digits with leading zeros assumed.
The VSN appears on the previewing display for the operator's information before the job
is assigned to a control point. Once the tape is mounted and the unit made ready) the
operating system can locate the volume without further operator action. Once the tape
is assigned, the VSN is verified against the standard or Z format label, if present. VSN
also is verified against operator-supplied VSN for an unlabeled tape.

If a scratch tape is desired, a VSN of SCRATCH or 0 can be used. The * prefix can
be used for a scratch tape also.

If a VSN parameter is declared for a file on a REQUEST, and a VSN control statement
or a VSN parameter on a LABEL control statement also appears, the first declaration is
effective.

Any VSN declaration is used; otherwise, file header label fields are used for assignment
and verification. If neither VSN nor file header label field declaration is made, any
tape volume is accepted; but the assignment must be made manually unless * prefix is
used.

Parity error recovery procedure:

NR

Special tape use:

CK

MF

absent

The NR parameter can be used to inhibit normal parity error recovery procedures. Data
containing the parity error is returned to the user.

Checkpoint dumps are written on the tape.

The tape is a valid U or Z labeled multi-file set.

Neither of the above is assumed.

Inhibit system noise brackets:

IB

60493800 A

The IB parameter inhibits system noise brackets. Use of this parameter is recommended
if the tape is to be read on another system.

4-67

Data format:

S Data format is S.

L Data format is L.

absent Data format is SI format.

Input or output use (apply only to labeled tapes):

E

N

absent

Existing label. Initial use of the tape is input; only the expiration date is checked in
the label.

New label. Initial use of the tape is output; tape label is written.

If me is to be labeled (U, Z or Y is declared), a tape label is written.

label. characteristics:

U

Y

Z

absent

label processing:

NS

Tape label format is ANSI (standard label)

Tape label format is Y (3000 series label).

Tape label fonnat is ANSI, except character 12, of the VOLI label is used to indicate
data density. These labels were standard for SCOPE 3.3.

Tape is unlabeled unless either E or N is declared; in which case, ANSI (U) label format
is assumed.

The NS parameter can be used to indicate a tape has non-standard labels and is to be
processed as unlabeled even though the tape is labeled; existing labels appear to the
system as data and are passed to the user as such. The user can then process the labels
or ignore them. Non-standard labels are not supported on SI tapes.

9-TRACK TAPE PARAMETERS:

A declaration of NT or a 9-track d~nsity for a tape to be written is required to identify a 9-track tape.
Definitions and conditions for all except the density and data format parameters are the same as those for
7-track tape.

I REQUEST Jfn'NT'{~ } ,{ ~ }, {~~} , {n, {~S }, {~~} , {~ }, {~6'~NG } JB,NR,VSN=vsn.

4-68 60493800 C

Density:

A density specification is effective only when the tape is to be written: density setting is a hardware
function when the tape is read.

PE 1600 cpi

HD 800 cpi

GE 6250 cpi

absent Tape is written 'at installation-declared density.

Data format:

s Data format is S.

Data format is L.

absent Data format is SI format.

Inhibit system noise brackets:

IB The IB parameter inhibits system noise brackets. Use of this parameter is recommended
if the tape is to be read on another system. Noise brackets always are inhibited on
phase encoded tapes.

Coded data (!onversion codes for 9-track S or L tapes (refer to conversion tables in appendix A):

US Coded data on tape is to be converted from ASCII on input· or to ASCII on output.

EB Coded data on tape is to be converted from EBCDIC on input or to EBCDIC on output.

absent Coded data conversion is defined by the installation.

Examples of REQUEST statements for tapes:

1. REQUEST(FltE1,NT,U,E,NORING) or REQUEST(FILE1,NT,E,NORING)

The operator must assign an ANSI labeled, 9-track tape. The label is checked when the first
function is issued on the tape. Because density is not specified, it is assumed that both the label
and data are written at the same density.

2. REQUEST(FILE,*MT,R·ING)

Depending on installation option, the system automatically assigns FILEI to a scratch tape on a
7-track tape unit. The file is unlabeled and written in SI data format at an installation-declared
density.

tCurrently L tapes are supported only on 7-track tape devices and CDC 669/6799-track Tape Drives.

60493800 C 4-69

3. REQUEST(STANF27,LO,VSN=OHI017,U,.s,SV,RING)

Depending on installation option, file ST ANF27 is assigned automatically to a unit containing
volume OHIOI7. An ANSI label is written; both label and data are written at 200 bpi. Data
format is S. The volume is saved at job completion.

UNIT RECORD DEVICE REQUEST

When a me is input from a card reader or output to a printer or card punch, devices are assigned automatically;
REQUEST is not necessary. There are no standard drivers for the unit record equipment; request and assignment
of such devices is only valid for on-line diagnostic packages or for devices for which the installation has provided
drivers. If the installation has provided drivers, the following devices can be requested. Assignment is not auto­
matic; the operator must assign the requested device to the job.

REQUEST ,lfn,dt.

lfn

dt

Logical fue name of 1-7 letters or digits beginning with a letter.

Device type. The following device types are recognized, but not supported by the
standard system. If an installation provides software drivers for these devices, they
can be specified.

LP Any available line printer GC 252-2 Graphics Console
LQ 512 line Printer HC 253-2 Hardcopy Recorder
LR 580-12 line Printer FM 254-2 Microfilm Recorder
LS 580-16 line Printer TR Paper tape reader
LT 580-20 line Printer TP Paper tape punch
CR 405 Card Reader _ PL Plotter
CP 415 Card Punch

ECS FILE RE'QUEST

Files that are to reside on ECS are requested by the following control statement; this statement is not to be
used for files that are buffered through ECS.

I 4-70

REQUEST ,lfn,AX,EC.

lfn

AX

EC

Logical file name of 1-7 letters or. digits beginning with· a letter.

ECS device type mnemonic. Required.

Maximum file size. If omitted, default buffer size is the maximum file size.

EC

ECnnnn
ECnnnnK

ECnnnnP

Default buffer size maximum.

Maximum size nnnn words multiplied by 1000 (octal).

Maximum size nnnn ECS pages, where page size is 1000 (octal)
60-bit words.

60493800 C

If ECS is turned 0 FF, the files requested on ECS are allocated on rotating mass storage devices.

MASS STORAGE FILE REQUEST

Mass storage files on either public device sets or private device sets are requested as follows. The EC param­
eter is valid only for files on public device sets.

For private device sets, a MOUNT control statement must assign the master device to the job before
REQUEST assigns a file to the device set.

REQUEST,lfn,dtaa,OV,EC,*PF,*Q, {SSNN } ,VSN=vsn.
=setname

The first parameter must be lfn. Other parameters are optional and order independent.

lfn

dtaa

OV

EC

Logical file name of 1-7 letters or digits beginning with a letter.

Device type mnemonic and allocation style. An asterisk can appear before dt, but its
function is redundant.

dt

aa

Device type mnemonic for a mass storage device:

AM

AY

AH

841 Multiple Disk Drive

844-21 Disk Drive

819 Disk Drive (CYBER
170 Model 176 only)

AZ 844-41 Disk Drive

A* Any mass storage device

Octal allocation style defined by the installation for public sets; 'by
LABELMS for user device sets. Can be null.

Overflow to any other mass storage device is allowed when device dtaa or a device
specified by SN and VSN parameters is unavailable or full. Permanent fIles are
assigned only to permanent file devices and queue devices, respectively; otherwise, the
file might be assigned to any mass storage. If all mass storage of any type becomes
unavailable, a device capacity exceeded status is returned to a COMPASS program
when the EP bit is set in the FET. When OV is omitted, and requested device is not
available or full, all parameters are ignored except *PF, *Q, and SN as the system
selects the device on which to continue.

Buffer file through ECS. Valid only for sequential files on public devices.t If ECS is
OFF, this parameter is ignored for this job.

The EC parameter can also be used on a CYBER 170 Model 176 to request a
specific number of LCM buffers for buffering data to the 819 disk. If the user
specifies AH (819 Disk Drive) without specifying the EC parameter, the default
number of LCM buffers is assigned.

EC Default buffer size.

ECnn Number of 51210-word buffers (nn) to be assigned.

t All file types will be buffered for device type AH (CYBER 170 Model 176 only).

60493800 C 4-71

I

*PF

*Q

SN

VSN=vsn

Eennnn

ECnnnnK

ECnnnnP

Buffer size of nnnn 6O·bit words multiplied by 1 000 (octal).

Buffer size of nnnn EeS pages, where page size is 1 000 (octal)
60·bit words.

Assign file to a permanent fIle device. If SN and VSN specify a permanent file device,
*PF is not required. If SN is not specified, the file is assigned to the default *PF set.

File is to be assigned to a queue device. If SN is a private device set, *Q is not allowed.
If SN is not specified, the file is assigned to the queue set.

Assign file to setname. If omitted, file is assigned to a public device set.

SN

setname

Setname specified by SETNAME control statement; if SETNAME has
not been specified previously, ftle is assigned to a public device.

Name of set. 1-7 letters or digits beginning with a letter.

Volume serial number of. device within set specified by SN, 1-6 letters or digits with
leading zeros assumed. VSN cannot be used without the SN parameter.

Allocation style aa is an optional appendage to the device type mnemonic. Two digit octal codes representing
allocation style must be defined at each installation; they can be used to identify sub-areas of a device. For
example, an installation can divide 844 disk packs into two sub-areas - default and large space allocation. If
the large space allocation .area is identified as allocation style aa=55, files residing in the large space allocation
sub-area are assigned more units of disk storage than similar files residing in the default sub-area. At this
example installation, a file is assigned large space allocation sub-area by REQUEST(lfn,AY55).

RESTART (RESTART JOB FROM CHECKPOINT TAPE)

RESTART restarts a job from a checkpoint tape. After locating the proper dump on the checkpoint tape, the
restart program requests all tape files defined at checkpoint time, and repositions these files. Then a request is
made for all mass storage files and ECS buffer length where applicable. Files are copied from the checkpoint
tape and repositioned. REST ART also restores the central memory field length of the job and restarts the
user's program. If a permanent file was attached to the job when a checkpoint was called, it is attached and
positioned as it was at the time of the checkpoint.

A restart job requires only a control statement to request the checkpoint tape (REQUEST or LABEL) and the
RESTART control statement. If a checkpoint tape is not requested, the restart program requests an unlabeled
7-track or 9-track tape (for the file named on the RESTART control statement) as follows:

REQUEST(lfn,CK,MN)

Since RESTART recreates all files used for the checkpointed job, the user should not create any files before
the call to RESTART. If any of those files are recreated by the user before the call to RESTART, a
duplicate file error might occur.

If a device set was mounted when the checkpoint was taken, the job issuing the REST ART must execute
a MOUNT control statement for the device set before calling RESTART; REST ART does not mount device
sets. Files on device sets are attached and positioned by RESTART.

4-72
60493800D

Any ECS direct access user area attached to the job is copied in its entirety to the checkpoint tape. At restarttime,
it is recopied to ECS from the checkpoint file. On the job statement for the restart job, the user must request at least
as much ECS as was attached to the original job. If reconfiguration results in insufficient ECS available to the user,
restart is not possible. The RESTART statement should not be used within a CeL procedure (see section 5). I
The format of RESTART is:

RESTART,name,n,S=xxx.

All parameters are optional and order independent.

name Name of checkpoint fIle as defined at checkpoint time. Default is CCCCCCC.

n Number (decimal) of checkpoint to be restarted. If n is greater than the number of
the last checkpoint taken, the restart attempt is terminated. Default is 1.

S=xxx Ignored by RESTART: allowed for compatibility with previous systems.

A checkpoint dump cannot be restarted in the following cases:

A tape fIle necessary for restarting the program was overwritten after the checkpoint dump was taken.

A machine error propagated bad results but did not cause abnormal termination until after another
checkpoint dump.

RETU RN (EVICT FILE)

RETURN performs an operating system CLOSE/RETURN function. - It differs from the UNLOAD control
statement only in that RETURN reduces the maximum number of tapes that can be held by the job, but
UNLOAD does not. RETURN deletes all references to the files specified, except as noted below, and
destroys the fIle contents of local files.

The format of RETURN is:

RETURN,lfnl,lfn2,

More than one fIle or multi-file set can be specified; only one is required.

lfn Name of file to be returned, 1-7 letters or digits beginning with a letter. lfn cannot
be INPUT.

Name of multi-file set tape to be returned, 1-6 letters or digits beginning with a letter.

For magnetic tape output fIles, RETURN causes trailer labels to be written, the file to be rewound, and then
to be unloaded. With the exception of members of a multi-fIle set, the tape units on which the file resides
is disassociated from the job and made available to the system for new assignment. The count of the number
of tape units logically required by the job, as set by a tape parameter on the job statement, is then decreased.

60493800 C 4 73

For multi-file set names, the tape units assigned to the set are disassociated from the job and made available
to the system for new assignment. The count of the number of tape drives required is then decreased.

For mass storage files, ·RETURN causes the me to be returned. Special-named files on queue devices are
released to the output queue associated with their dispositions: if any of the special-named files are to be
evicted, the DISPOSE or ROUTE control statement should be used instead of RETURN. Permanent mes
return to permanent file manager jurisdiction. Other mass storage mes are evicted.

REWIND (REWIND FILE)

REWIND positions a file at the beginning-of-iilformation.

For a labeled magnetic tape, this position is the start of the user's data after label information.

For unlabeled multi-volume tapes, a REWIND causes the current volume to be rewound.

For labeled multi-volume, single-file tapes, a REWIND causes the current volume to be rewound and
the volume number in the system tables to be set to 1. A subsequent forward motion causes the
label to be read and compared with the system tables, and the operator is notified if the current
volume is not number 1.

For labeled multi-me tapes, a REWIND issued for a file causes positioning to the beginning of that file.
If necessary, the operator is instructed to mount the previous volume.

The format of REWIND is:

REWlND,lfnl,lfn2,

More than one ftle can be specifted; only one is required.

lfn Name of file to be rewound, 1-7 letters or digits beginning with a letter.

A REWIND that references a multi-fIle set name is illegal; the job terminates.

In most cases, when a me is requested for a job, that file is positioned automatically at beginning-of-information.
However, because of variations in installation parameters and procedures, automatic positioning can not always
occur with every file requested. Therefore, it is best to follow the REQUEST statement with a REWIND state­
ment to ensure that the file is positioned at its beginning when first referenced.

RFL (REQUEST FIELD LENGTH)

RFL requests a specific central memory field length and inhibits dynamic field length management by the
operating system. RFL should not be used u~ess the job has special requirements. A REDUCE control
statement should immediately follow the operation that requires RFL use, so that dynamic field length
management is restored.

For most jobs, the amount of central memory required varies with each job step. For example, a FORTRAN
compilation might require 45000 words and a COpy routine might require 5000 words. System usage can be

4-74 60493800 A

improved when memory not currently needed is freed for other jobs. The system automatically increases or
decreases the field length assigned to a job to optimize use of system storage.

If a job step needs more storage than would be assigned normally, RFL can be used to specify the maximum
field length required. RFL can increase or decrease field length.

The format of RFL is:

New field length (octal). Maximum value is established by the value of the CM parameter
on the job statement, if any, or by an installation-determined value. The fl parameter must
be specified; there is no default.

ROUTE (FILE DISPOSITION)

ROUTE directs a file to an input or output queue. Both me destination and type of further processing can
be specified by control statement parameters. ROUTE is concerned with handling a file after it is released
from the job, so it is not applicable to files with a fixed residence such as permanent mes, private device set
files, or ftles residing on other non-allocatable equipment. Unless deferred routing is requested, the file is
released from the job immediately.

The file must be resident on a queue device. This can be assured by specifying *Q on a REQUEST statement.

The characteristics of a file that can be specified by ROUTE are:

Disposition code

Deferred routing

External
characteristics

Forms code

File ID

Internal
characteristics

Priority

Repeat count

Spacing code

Station ID

Terminal ID

Print, punch, etc.

Do not release the file immediately

Punch card format or print train

Particular paper or card forms to use

Name identifying the file while it is in the output queue, this name is printed on
the banner page of a printout or punched on the lace card of a punch card deck

Data is in display code, ASCII, or binary format

Priority of me to be output at originating INTERCOM terminal

Number of extra copies for output files

Octal number of the array to be used with the 580 PFCprinter

Logical identifier of the computer to process the me

Central site or identifier of the INTERCOM terminal to- 'receive the me"

Unlike DISPOSE, deferred routing can be used with INTERCOM terminal ID and forms code on a ROUTE
control statement.

60493800 C 4-75

I

I

I

Files on public mass storage devices, except those with the special names listed below, receive a disposition
code of scratch when they are created. At end-of-job or when the file is returned, such a ftle is discarded.

Files with special names receive specific disposition and external and internal characteristic codes when they
are created. These ftles are sent to the predetermined destination at end-of-job or when returned. If a special­
named ftle is to be discarded, DISPOSE or ROUTE must be used. The file names with special codes are
listed below:

Special
File Name Destination Default DC Default EC Default IC

OUTPUT Print on any available printer with PR A6 or B6tt DIS
standard print train

7~ 026 or~2J) PUNCH Punch in Hollerith format DIS
PUNCHB Punch in standard binary format ''liD SB BIN
P80C Punch in free-form binary format PU 80COL BIN
FILMPRt Print on microfilm recorder FRt
FILMFLt Plot on microftlm recorder FLt
HARDPRt Print on hardcopy device HRt
HARDFLt Plot on hardcopy device HLt
PLOTt Plot on any available plotter PTt

Format of ftles routed to the input queue can be dictated by operating system convention. If keywords FID,
IC, EC, or 'FC are used in conjunction with DC=IN, they are ignored and no warning message is issued.

The format of ROUTE is:
!

I ! I / '
ROUTE Iii D~F {DC=dC} {EC;ec} {FC=fC} {FID=fid} {IC=iC} {PRI=Pri} {REP=n} {sc=nn},

,n, ."' DC 'EC 'FC 'FID' IC 'PRI 'REP 'sc
I

{~~mf}'{E~t--
Only lfn is required. All other parameters are optional and order independent.

lfn

DEF

Logical fIle name of the file to be routed, 1-7 letters or digits beginning with a letter.
lfn cannot be INPUT.

Defer file disposition. The system stores the information about the ftle and disposes it
as requested when the file is released. Files are released by RETURN and UNLOAD
control statements, ROUTE or DISPOSE statements that specify immediate release,
or at end-of-job.. Routing of files to the input queue cannot be deferred. With deferred
routing, the user can redefine the same flle with subsequent ROUTE statements or
specify characteristics of a file before the file is created.

t Supporting software must be supplied by the installation.
ttDepends on installation parameter. .

4-76 60493800 C

DC=dc

DC

EC=ec

DEF used with DC=IN causes the ROUTE statemen~ to be ignored. If omitted, file
is released at ROUTE execution. DEF used with DC=SC, or DC not equivalenced,
causes all user generated output to be discarded. The dayfile is not discarded.

File disposition:

SC Evict (scratch) the file (default)
PR Print on any available printer
P2 Print on 512 printer
LR Print on 580-12 printer
LS Print on 580-16 printer
LT Print on 580-20 printer
PU Punch

FRt
FLt
HRt
HLt
PTt
IN

Use of DC=IN can be restricted by the installation.

Equivalent to DC=SC.

External characteristics of the print or punch file.

Print Files:

B4 Print format BCD 48 character print train
B6 Print format BCD 64 character print train
A4 Print format ASCII 48 character print train
A6 Print format ASCII 64 character print train
A9 Print format ASCII 95 character print train

Print on microfilm recorder
Plot on microfilm recorder
Print on hardcopy device
Plot on hardcopy device
Plot on any available plotter
Place file in the input queue

Default value for JANUS print files is B6 or A6 depending on installation option. If
EC=A9 is specified, JANUS will not print the file unless IC=ASCII is also specified.
For all other print EC values, JANUS requires IC=DIS. INTERCOM print files with a
default EC code are printed on any available train other than B4 or A4. The print
trains normally mounted for output from INTERCOM terminals are:

BCD 200UT B6
ASCII 200UT A6
730 Series batch terminal A6
711 and 714 terminal A9

Punch Files:

026
029
ASCII
SB
80COL

Punch format 026
Punch format 029
Punch format ASCII
Punch format binary
Punch format 80 column binary

Default value for JANUS punch files is 026 or 029 depending on installation option.
The only INTERCOM terminal with a punch is the 733; the default is determined
when the terminal is auto-loaded.

tSupporting software must be supplied by the installation.

60493800 B 4-77

EC

FC=fc

FC

FID=fid

FID

IC=ic

IC

PRJ=pri

PRI

REP=n

REP

4-78

Use default value for external characteristics.

Forms code, where fc can be any two letters or digits. This parameter indicates special
card or paper forms are to be used for output. The operator should be informed of
the meaning of the codes so that the proper forms are mounted. Each installation,
typically, establishes procedures for using forms codes.

Use standard forms. Default.

File name while the file is in the output queue.

* First five characters of the file name are the same as the first five characters
of the job name. Two unique sequence numbers, different from the job
sequence numbers, are added in the sixth and seventh positions.

fffff First five characters of the file name are fffff. This name is printed on the
banner page of a printout or punched on the lace card of a punch card deck.
Any combination of one to five letters or digits can be specified, with the
first character a letter. The two unique job sequence characters added by
the system to the job name are used as the sixth and seventh characters of
the file name. If fffff is less than five characters, the name is filled with
display code zero through the fifth pOSition.

*fffff Equivalent to FID=fffff except two unique sequence numbers, other than the
job sequence numbers, are added in the sixth and seventh pOSitions.

File name while the file is in the output queue is the same as the job name. Default.

Internal characteristics of the me:

DIS
ASCII
BIN

File format is display code. Default
File format is ASCII
File format i.s binary

IC=DIS is required by JANUS for all print ,files except where EC=A9, in which case,
IC=ASCII is required. Files can be printed at INTERCOM terminals when IC=DIS
or IC=ASCII is specified with any EC parameter. IC=BIN is required for binary punch
meso

Equivalent to IC=DIS.

Priority level for a file to be output at originating INTERCOM terminal, 1-4 (octal)
digits. PRJ can be used to enter a priority for a me to be entered into the remote
output queue. In any other instance, the parameter is ignored.

File receives standard priority. Default.

Repeat count for output mes, n~37B.

Default value, zero extra copies.

60493800 B

SC=nn Spacing code for output sent to a 580 PFC printer. nn is an octal value, 0 to 77B, indicating
an installation-dermed spacing code array. Zero indicates the default array. All other values
of nn are defined at the installation. See a site analyst for valid nn values.

SC Equivalent to SC=O.

ST=mmf The logical identifier of the system responsible for processing the ftle. If DC=IN, mmf
is the logical identifier of the system where the job is executed. The ST parameter on
the ROUTE control statement overrides an ST parameter on the job statement of the
routed ftle. If the DC parameter specifies an output queue, mmf is the system where
the file is output.

ST Process the ftle on the system where it originated.

TID=-tid INTERCOM terminal identification. File is to be returned to terminal identified.

TID=C File is to be output at central site.

TID File is to be returned to the site or terminal where the job originated. Default.

Examples of ROUTE usage:

1. job statement
ROUTE(LOON,DEF,DC=PR,EC=A9,IC=ASCII)

EXIT.

ROUTE(LOON,DC=SC)

7/8/9

61718/9

This job creates a long file in ASCII format for a printer with an ASCII 95-character print train.
If job aborts, the file is scratched. If job terminates normally, ftle LOON is printed after operator
mounts 95-character print train. Note that the me is referenced before it is created. .The routing
information is saved and used when the ftle is sent to the output queue.

2. job statement -
COpy (I NPUT,SWA LLOW)

ROUTE(SWALLOW,DC=I N)

7/8/9
SWALLOW,STABC.

60493800 C 4-79

I

I 4-80

7/8/9

61718/9

The job file SWALLOW is executed on system ABC.

3. job statement
COPYBF(lNPUT,FALCON)

ROUTE(FALCON,DC=IN,ST=ABC)

7/8/9
HAWK,T100.

COPYBF(I NPUT,OWL)

REWIND(OWL)

COPYBF(OWL,EAG LE)

ROUTE(OWL,DC=PR)

ROUTE(EAGLE,OC=PR,ST=DOG)

7/8/9

6171819

This job creates a file FALCON which is all but the control statements of the job. File FALCON
is sent to the input queue of system ABC where it is known as job HAWK. Job HAWK produces
ftle OWL to be printed on system ABC and fde EAGLE to be printed on system DOG.

4. job statement
COpy (INPUT,SWI FT)

OURTE(SWIFT,DC:IN,ST=DOG)

7/8/9
SWIFT,STABC.

7/8/9

61718/9

When the STparameter is specified on ROUTE and on the job statement of the fIle being routed,
the ROUTE control statement overrules the job statement. Job SWIFT is executed on system
DOG.

60493800C

s. job statement

ROUTE(PIPIT,DEF ,DC=PR)

RETURN(PIPIT)

7/8/9

61718/9

When the control statement RETURN(PIPIT) is executed, the file PIPIT is sent to the output queue
to be printed. PIPIT is not scratched.

6. job statement

ROUTE(GREBE,DEF ,EC=A6,IC-ASCII)

ROUTE(GREBE,DEF,EC=A9)

ROUTE(GREBE,DC=PR)

7/8/9

61718/9

The me named GREBE is printed on a printer with a 96-character ASCII print train. When the
first ROUTE is executed, an EC of A6 and IC of ASCII are recorded. When the second RQUTE
is executed, the EC is changed to A9. Since the IC parameter does not appear, its value does not
change. When the third ROUTE is executed, the file GREBE is sent to the output queue to be
printed. Subsequent references to an lfn of GREBE refer to a new file with the same name.

60493800 C 4-81 I

I 4-82

7. MURRE.

ROUTE(ALCID,FID=* ,DC=PR)

7/8/9

617/8/9

Suppose the two unique sequence characters added to the job name by the system are 3F. The
job is then known as MURRE3F. If the next sequence characters were 3Z when ROUTE is
executed, the fue ALCID would be given the name MURRE3Z when it is printed.

8. BIRDS.

ROUTE(TERN,FID=*TERN)

7/8/9

617/8/9

Suppose the sequence characters are as in example 7. Then the file TERN is printed as TERN03Z.

9. BIRDS.

ROUTE(TERN,FID=TERN)

7/819

617/8/9

Suppose the sequence characters are as in examples 7 and 8. Then the ftle TERN is printed as
TERN03F.

60493800 C

SAVEPF (CATALOG PERMANENT FILE ON LINKED MAINFRAME)

SA VEPF makes an existing local me a permanent me on the mainframe specified. SA VEPF differs from the
CATALOG control statement in that SAVEPF can catalog a file at a mainframe other than that where the
job is executing; CATALOG cannot.

The format o-f SA VEPF is:

SA VEPF ,lfn,pfn,ID=name,AC=act,CN=cn,CY =cy ,EX=ex,FO=fo,MD=md,MR=m,PW=pw ,RD=rd,RP=rp,

RW=p,ST=mmf,TK=tk,XR=xr.

The lfn and ID parameters are required in the order shown. All other parameters are order independent.
The ST parameter is required; other parameters might be required, as noted with CATALOG. Any
SN parameter is ignored. If a terminator does not appear at the end of the parameter list, column
of the next card or line is considered to be a continuation of the SA VEPF parameter list.

lfn

pfn

Logical file name by which the file is presently known to the job, 1-7 letters or digits
beginning with a letter. This name does not become part of the permanent me
identification.

Permanent file name by which the me is known in permanent file manager tables, 1-40
letters or digits. If pfn is omitted, lfn is used.

ID=name Owner or creator of me.

System on which me is to be cataloged, 3 characters. The values for mmf are established
at installation time.

When the ST parameter designates a mainframe running SCOPE 2, the me structure must adhere to
SCOPE 2 Record Manager defaults; otherwise a FILE statement must be used. For example, the
SCOPE 2 FORTRAN and COBOL compilers expect the source program to be in W type record
format. A program created under the NOS/BE INTERCOM Editor consists of Z type records and
cannot be compiled directly by SCOPE 2 compilers.

Example:

A user writes a program under the Editor CREATE command and makes the me local to· the
job with aSA VE,ZZZ command. The user than enters the following statement to make the
me permanent under SCOPE 2: SA VEPF ,ZZZ,ID=XX,ST=MFZ., where MFZ is the mainframe
running SCOPE 2. The system responds with WAITING FOR MMF SA VEPF. This message
appears even if the SCOPE 2 mainframe is down or not available. When INTERCOM responds
with .. , the me has been transferred and made permanent.

To compile and execute the program made permanent on SCOPE 2, the user creates the
following me under the Editor CREATE command.

SCOPE 2 job statement.
SCOPE 2 account statement.
FILE,ZZZ,RT=Z,BT=C,FL=80.
ATTACH,ZZZ,ID=XX.
FTN,I=ZZZ.
LGO.

60493800 D
4-83

I

With the SAVE and BATCH commands, the user makes the file local and then submits the
job. The program on file ZZZ is attached, compiled, and executed. The job aborts if the
FILE statement is. not included, since the FORTRAN compiler would expect W type records.

See the CYBER Record Manager Reference Manual and the NOS/BE Station Operator's
Guide /Reference Manual for additional details on file conversion requirements.

See the CATALOG control statement for the remaining parameters.

SETNAME (ESTABLISH IMPLICIT SETNAME)

SETNAME indicates the device set to be referenced implicitly by subsequent ATTACH, PURGE, and REQUEST
control statements. When SETNAME is not used, these control statements implicitly reference a system device
set.

The format of SETNAME is:

SETNAME,setname.

The parameter can be omitted.

setname Name of device set to be referenced implicitly, 1 ... 7 letters or digits beginning with a
letter. If omitted, public device sets are assumed.

A second SETNAME control statement overrides the first.

SETNAME is explicitly overridden by an SN=setname parameter on a REQUEST, ATTACH, or PURGE control
statement. An SN that does not specify a setname on a REQUEST control statement does not override the
SETNAME control statement. A rotating mass storage REQUEST which does not have an SN parameter will
always reference public device sets.

SKIPB (SKIP BACKWARD SYSTEM-LOGICAL-RECORDS)

SKIPB bypasses one or more system-logical-records in a reverse direction. Current file position can be any
point within a record when -the control statement is executed. The file must have system-logical-record
structure. SKIPB cannot be used with tapes in S or L format and should not be used with CYBER Record
Manager file organizations unless RT=S.

The format of SKlPB is:

SKlPB,lfn,n,lev,mode.

Parameters are positional; only lfn is· required.

60493800 C

lfn Logical fIle name, 1-7 letters or digits beginning with a letter.

n Number of system-logical-records of level lev or greater to be skipped, 1-262142
(decimal). Default is 1. A value greater than 262142 is treated as a rewind request.

lev Level number, 0-17 (octal). Default is O.

mode File mode applicable to tape rUes only:

B Binary. Default.

C Coded

Skipping stops when the specified number of terminators containing the specified level have been bypassed or
beginning-of-information is encountered. At the end of SKIPB, the file is positioned immediately following
the syste~-logica1-record terminator examined last. When the me is positioned immediately following a
system-logical-record terminator, that terminator is not counted in the execution of n skips.

SKIPF (SKIP FORW ARD SYSTEM-LOGICAL-RECORDS)

. SKIPF bypasses one or more system-logical-records in a forward direction. Current ftle position can be any
point within a record when the control statement is issued. The file must have system-logical-record structure.
SKIPF _ cannot be used with tapes in S or L format and should not be used with CYBER Record Manager file
organizations unless RT=S.

The format of SKIPF is:

SKlPF ,lfn,n~lev ,mode.

Panlmeters are positional; only lfn is required.

Ifn

n

lev

mode

Logical file name, 1-7 letters or digits beginning with a letter.

Number of system-logical-records of level lev or greater to be skipped, 1-262142
(decimal). Default is 1.

Level number, 0-17 (octal). Default is O.

File mode applicable to tape files only:

B Binary. Default.

C Coded

Skipping stops when the specified number of terminators containing the specified level have been bypassed or
end-of-information is reached. At the end of SKIPF, the file is positioned immediately foll-Owing the system­
logical-record last examined.

A value greater than 262142 for the number of records to be skipped causes a rotating mass storage file to be
positioned at end-of-information. For a tape file, a similar parameter causes the fife to remain at its current
position.

60493800 C 4-85 I

I

SUMMARY (ACCOUNT SUMMARY)

SUMMARY obtains an accounting summary up to the point in the job where the statement is encountered.
The accounting summary, which appears in the job dayfIle, lists resources used to this point in the job. The
resources used by a job step can be· determined by executing a SUMMARY statement before and after the job
step and subtracting the resulting values. The summary output is the same as the accounting summary
generated at end-of-job.

The format of SUMMARY is:

SUMMARY.

The discussion of the dayfIle in section 2 gives details of summary output.

SWITCH (SET SOFTWARE SWITCH)

SWITCH sets one of the six software switches available for each job. At the start of job execution, all
switches are zero. Execution of SWITCH changes the current setting to its opposite mode.

In program branching, where two alternate processing routes are provided, the software sense switch is fre­
quently used to determine the path taken. This switch is a bit in central memory that a user's program can
reference. A program might contain a request to take one path if the bit is set to one (on) and another if
it is zero (off).

The format of "SWITCH is:

SWITCH,n.

n Number of switch to be changed, 1-6. The n parameter must be specified; there is no
default.

Switches also can be set by the central site operator, a terminal user, or a program in a language that supports
switch operations.

The following example changes switch 4 to ON, then OFF, then ON again.

SWlTCH,4.

SWITCH,4.

SWlTCH,4.

Set switch to 1.

Resets switch to O.

Resets switch to 1.

SYSBULL (ACCESS SYSTEM BULLETIN)

SYSBULL copies requested system bulletins to the OUTPUT file.

The format of SYSBULL is:

SYSBULL,p 1 ,p2, . . . ,pn.

4-86 60493800 C

Parameters· are all optional.

pi Bulletin names, ALL, or INDEX:

ALL

INDEX

Lists all bulletins. Any other parameters are ignored.

Lists index of all bulletins available. Default.

INTERCOM makes a call to SYSBULL whenever a user logs in. The calls are:

SYSBULL(LOGIN)
SYSBULL(SUP)

If SUP is not specified.
If SUP is specified.

SYSBULL automatically attempts to find the bulletin named LOGIN or SUP. If found, the bulletin is
immediately displayed. If SYSBULL does not fmd the system bulletin permanent fIle or the specific bulletin
LOGIN or SUP, processing continues.

The operating system calls SYSBULL for each batch job entered in the system.

The call is:

SYSBULL(BATCH)

SYSBULL automatically attempts to find the bulletin named BATCH. If found, it is the first item printed on
OUTPUT. If SYSBULL does not find the system bulletin permanent fde or the specific bulletin BATCH,
processing continues.

TRANSF (DECREMENT DEPENDENCY COUNT)

TRANSF decrements the dependency count for jobs in an interdependent job string. The user can submit a
string of interdependent jobs to the computer, specifying the order in which they are to be executed. In
such a string, jobs can be input in any order and from central site or remote card readers. A job is not
executed until all prerequisite jobs in the string have been executed. Whenever possible, the operating system
schedules interdependent jobs for execution in parallel (multiprogramming).

As each job is input, dependency identifier and dependency count on the job statement are noted. The
dependency count is decremented by TRANSF control statements in prerequisite jobs. When the count of
a dependent j<;>b becomes zero, it executes.

The Dym parameter on the job statement establishes job interdependency. y is the dependency identifier that
names the string to which the job belongs. m is the dependency count (number) of prerequisite jobs on
which the job depends.

TRANSF must appear after the control statements that execute the prerequisite programs. In multi-mainframe
configurations, a string of interdependent jobs must execute on the same mainframe. TRANSF should not
appear in the last job in the string since no jobs can depend on it.

60493800 C 4-87 I

I

The format of TRANSF is:

TRANSF Job 1 ,job2,

Multiple job names or multiple TRANSF control statements can be used.

job Name of job whose dependency count is to be decremented. Only the first five
characters of each job name are used, with the dependency string identifier maintaining
proper identification.

If a job containing a TRANSF control statement is terminated before that control statement is processed, the
dependency count of other jobs is not decreased. Instead, all succeeding jobs that depend on this job remain
in the input queue. 'No error message indicates that a job in a dependent string has terminated abnormally:
operator alertness is needed to know the remaining jobs should be evicted or forced into execution. A
message instructing the operator can be placed in a routine after a RECOVR function, or on a PAUSE state­
ment following an EXIT statement.

An example of an interdependent job string JS follows. Consider jobs with names· JOBA through· JO~F:

JOBB is dependent on successful execution of JOBA
JOBC on JOBA
JOBD on JOBB and JOBe
JOBE on JOBC
JOBF on JOBB, JOBD, and JOBE

The control statements should appear with:

JOBA,DJSOO.

execution call

TRANSF(JOBB,J08C)

7/8/9

J08C,DJS01.

execution call
TRANSF (J08D,JOBE)

7/8/9

JOBE,DJS01.

execution call
TRANSF(JOBF)

7/8/9

J088,DJS01.

execution can

TRANSF (JOBD,J08F)

7/819

J08D,DJS02.

execution can
TRANSF(JOBF)

7/8/9

J08F ,DJS03.

execution call
7/8/9

JOBF, which can execute only if all other jobs in the string are successful, has a dependency count of
3, the number of jobs containing TRANSF references to JOBF.

4-88 60493800 C

TRANS,pF (TRANSFER PERMANENT FILE)

TRANSPF changes the residence of permanent files and permanent file tables within a device set so that all
permanent fIle information can be removed from a device. It also copies files from one device set to another.
These operations are known as a single device set transfer and a dual device set transfer, respectively.

Before TRANSPF can be executed, a permanent me with name of DUM and ID of PUBLIC must be cataloged
on the device set specified by the FS parameter. If this is not done, TRANSPF aborts. TRANSPF issues an
internal ATTACH of the permanent file DUM; the passwords submitted in this ATTACH are those submitted
via the PW parameter on the TRANSPF request. If TRANSPF is unable to attach the permanent file DUM,
the function aborts.

Before TRANSPF is called, a MOUNT control statement must be executed for the master devices of the device
sets specified by the FS and TS parameters. TRANSPF cannot be run on a shared device set.

The format of TRANSPF is:

TRANSPF ,PW=pw ,FS=setname 1 ,TS=setname2,FM=vsn 1, TM=vsn2,LF=lfn.

Parameters FS and TS are required; PW is required if passwords have been defined for file DUM.
Remaining parameters are optional. All parameters are order independent. If a terminator does not ,
appear at the end. of the parameter list, column 1 of the next card or line is considered to be a
continuation of the TRANSPF parameter list.

PW=pw

FS=setname 1

TS=setname2

FM=vsnl

TM=vsn2

LF =1 fn

60493800 D

Specifies read, control, and modify passwords if defined for permanent me DUM. The
turnkey password is assembled into the TRANSPF utility and need not be specified. If
passwords have been defined for me DUM, at least one must be specified with this
parameter or the utility aborts. No default exists.

Name of device set from which permanent file information is to be transferred; 1-7 letters
or digits beginning with a letter-; Default is the permanent file default set.

Name of device set to which permanent file information is to be transferred; 1-7 letters or
digits beginning with a letter. Default is the permanent file default set.

Volume serial number of member device from which permanent file information is to be
transferred; 1-6 letters or digits with leading zeros assumed. Required when TS and FS
specify the same setname. When TS and FS specify different setnames, all devices in the
set are assumed and the FM parameter cannot be specified.

Volume serial number of member device to which permanent file information is to be
transferred; 1-6 letters or digits with leading zeros assumed. Data that cannot be contained
on this device overflows to another member of device set specified by TS, except that
files do not overflow to the member specified by FM when TS and FS specify the same
setname. Required when TS and FS specify the same setname and FM specifies a master
device. When TS and FS specify different setnames, TM cannot be specified. Default is
all devices in device set specified by the TS parameter.

Name of me on which output listing is written; 1-7 letters or digits beginning with a
letter. Default is OUTPUT.

4-89

SINGLE DEVICE SET TRANSPF

A single device set TRANSPF is requested if the device set specified by the FS parameter is the same as the
device set specified by the TS parameter.

TRANSFERRING FROM A MEMBER

If the FM parameter does not specify a master device, permanent fIles residing on the FM device are moved
to the TM device. A file is moved if any part resides on the FM device. Once the file has been transferred,
the disk space associated with the old copy is released. If the file cannot be completely contained on the
TM device, the file overflows to any other deVice in the set except the FM device. If the transfer of a fIle
is unsuccessful, that file is skipped, but TRANSPF is not aborted. A file transfer can be unsuccessful because
of uncorrectable parity errors, not enough space in the device set to accommodate two copies of the file
simultaneously, or permanent file catalog full. When all permanent file information is successfully transferred
from the FM device, that device is no longer a permanent fIle device.

TRANSFERRING FROM A MASTER

When the FM parameter specifies a master device, the device set tables are moved to the device specified by
TM, and the device labels for both devices are updated to reflect the new organization of the device set. If
the tables cannot be successfully moved, the deviG,e set is not changed by the TRANSPF utility. Table
transfers can fail because of uncorrectable parity errors, or not enough space on the TM device to completely
contain the disk tables. The system must be idle before TRANSPF is executed for table transfer.

After the master device is successfullly changed, permanent files residing on the FM device are moved to the
TM device as described above. When all permanent file information is transferred from the FM device, that
device is no longer a permanent me device.

Examples of single device set transfer are:

1. . FIRST.

4-90

MOUNT(SN=TEST ,VSN=999)
TRANSPF(FS=TEST,TS=TEST,FM=999,TM=III,PW=A)
6/7/8/9

Mount master.

This job transfers all permanent files and permanent file tables from the master device with VSN
of 999 -to- the member device with VSN of 111. Both devices belong to device set TEST. Note
that the member device with VSN=III was not explicitly mounted. The system initiates the
mount of the member when actual I/O is requested by TRANSPF. If this job runs successfully,
device III is the master device of set TEST.

If the tables do not fit on the device with VSN=III, the set is not changed, and the job ends.
If the tables are successfully transferred, but the permanent files do not fit on the device with
VSN=lll, the files overflow to any devices in the set TEST except the device with VSN=999.

The permanent file DUM is assumed to have been previously cataloged with password A on device
set TEST.

60493800C

2. SECOND.
MOUNT(SN=TEST 1 ,VSN=555)
TRANSPF(FS=TESTI ,TS=TESTI ,FM=888,TM=222,PW=Q)
6/7/8/9

Mount master.

This job transfers all permanent files from the member device with VSN=888 to the member
device with VSN=222. Both members belong to the device set TESTl. Note that the members
with VSNs of 888 and 222 were not explicitly mounted. The system initiates the mount of
these members when actual I/O is requested by TRANSPF.

DUAL DEVICE SET TRANSPF

A dual device set TRANSPF is requested if the device set specified by the FS parameter is different from the
device set specified by the TS parameter. TRANSPF transfers permanent files by simulating the following
sequence of control statements:

REQUEST(lfn2,SN=setname2)
ATTACH(lfnl,pfn,ID=owner,SN=setnamel)
COPY(lfn 1 ,lfn2)
CATALOG(1fn2,pfn,ID=owner)
RETURN(lfnl,lfn2)

All files residing on the device set specified by the FS parameter are transferred to the device set specified by
the TS parameter. The FM and TM parameters cannot be used; no member devices can be specified. After
a successful transfer of a me, two copies of the file exist, one in the FS device set and one in the TS device
set.

A permanent file transfer might be unsuccessful if Ifn has an uncorrectable parity error, CATALOG is
unsuccessful for -reasons such as unavailable table space, or if not enough disk space is available on the TS
device set to contain the file.

In a dual device set transfer, the disk tables are not moved as a separate entity; critical tables are only moved
within a device set and never from one device set to another.

Example of dual device set transfer:

JOB.
MOUNT(SN=BOB,VSN=1944)
MOUNT(SN=TOM,VSN=1984)
TRANSPF(FS=BOB,TS=TOM,PW=YES)
6/7/8/9

Mount master.
Mount master.

This job moves permanent files from the device set BOB to the device set TOM.

60493800 C 4-91 I

I

UNLOAD (EVICT FILE)

UNLOAD performs an operating system CLOSE/UNLOAD function. It differs from RETURN only in that
RETURN reduces the maximum number of tapes that can be. held by the job, but UNLOAD does not affect
the tape count. UNLOAD deletes all references to the fIles specified, except as noted below.

The format of UNLOAD is:

UNLOAD,lfnl Jfn2,

More than one file or multi-fIle set can be specified; only one is required.

lfn Name of fIle to be unloaded, 1-7 letters or digits beginning with a letter. Can be a
member of a tape multi-file set; cannot be INPUT.

Name of multi-fIle set of tape to be unloaded, 1-6 letters or digits beginning with a
letter.

For tape fIles, tapes are rewound and unloaded after any necessary labels are written. The tape drive is then
made available for new assignment. However, UNLOAD cannot override an IU (inhibit unload) parameter on
the REQUEST control statement for the file. When the IU parameter exists, a subsequent unload rewinds,
but does not unload, the tape.

For mass storage mes, UNLOAD causes the fIle to be returned. Special-named files on queue devices are
released to the output queue associated wtih their disposition; if any of the special-named files is,to be
evicted, the DISPOSE or ROUTE control statement should be used rather than UNLOAD. Permahent fIles
return to permanent me manager jurisdiction. Other mass storage mes are evicted.

VSN (TAPE VOLUME IDENTIFICATION)

VSN has two functions for tape files:

It relates the external sticker (volume serial number) for a tape to the logical file name.

It provides information for the tape prescheduling display at the operator console. Since the operator
is then aware of upcoming tape requests, he can mount the required tapes so the system can access
them without further operator action.

The VSN control statement can be used in place of a VSN parameter on a REQUEST or LABEL control
statement. VSN execution does not affect either the checking or writing of tape labels. It can be specified
for labeled or unlabeled tapes.

The format of VSN is:

VSN,lfnl=vsnl,lfn2=vsn2,

One statement can be used for any number of fIles. Multiple VSN control statements can be used.
VSN can be continued: if the parameter list does not end with a terminator, column 1 of the next
control statement is considered a continuation of column 80.

4-92 60493800 C

lfn

vsn

For a single me, the logical ftle name of 1-7 letters or digits beginning with a letter.

For a multi-ftle set, the multi-ftle set name of 1-6 letters or digits beginning with a
letter.

Volume serial number of 1-6 letters or digits with leading zeros assumed. A vsn of 0
or SCRATCH, or omission of =vsn, results in scratch tape assignment.

If any of several alternate volumes suffice, equals signs should separate identifters, as
in: FILE=1234=1235.

If the ftle is to be assigned to a multi-volume set, VSNs should appear, separated by
slashes, in the order that volumes are to be accessed as in: BIGFILE=IST/2ND/ ... /
LAST.

If conllicting volume- serial numbers are given for a single tape file, the first encountered is used. However,
duplicate speciftcations on the same control statement produce a fatal error.

VSN statements can be placed anywhere in the control statements as long as they precede the REQUEST or
LABEL control statement that associates the file with the job. If a logical file name is to be re-used during
a job, such as OLDPL for two UPDATE operations, the ftrst file should be released by an UNLOAD or
RETURN control statement before a VSN is given for the second ftle.

Examples of VSN use:

1. JOBS,MT1.

VSN(TAPE1=1234)

REWIND,TAPE1.

The VSN control statement has no effect because no REQUEST or LABEL control statement
appears for me TAPEL File TAPEI is opened as a disk me.

2. JOBS,MT1.

VSN(TAPE1=1234)

REQUEST(TAPE1,MT,E,NORING)

JOB7,MT1.

REQUEST(TAPE1,VSN=1234,MT,E,NORING)

To have a specific magnetic tape assigned to the job, either of the above requests would suffice.

60493800 C 4-93 I

CYBER CONTROL lANGUAGE (CCl) 5

INTRODUCTION

The. CYBER Control Language (CCL) provides control statement manipulation. Various verbs allow selection
of CCL capabilities. The user may employ CCL to conditionally skip or process control statements and to process and
reprocess a group of control statements. Other CCL verbs control processing of control statements in a file other than
the job fIle. A CCL verb appears at the beginning of a CCL control statemeI)t, preceding any separators or terminators;
a verb is only part of a CCL statement.

The following verbs cause control statements (including CCL control statements) to be skipped or processed con­
ditionally.

IFE

SKIP

ELSE

ENDIF

If the IFE expression (for example, A=B) is true, processes following statements; if it is not
true, skips until a terminating statement is encountered

Skips until a terminating statement is found

Terminates and initiates IFE skipping

Terminates IFE, SKIP, and ELSE skipping

The following pair of CCL verbs allows the user to process and reprocess a group of control statements (including
CCL statemenjs).

WHILE

ENDW

Brackets a group of control statements and establishes the beginning of the group [The group is
processed as long as the WIDLE expression (for example, Rl<5) is true.]

Brackets a group of control statements and establishes the end of the group

The user can manipulate CeL symbolic names. A symbolic name is an alphanumeric character string recognized by eeL
eCL associates a constant or variable numeric value with a symbolic name.

SET Allows the user to alter the values of variable symbolic names

DISPLAY Evaluates an expression (for example, 2 + 3) and prints the result in the dayfile in both octal
and decimal

CCL also provides the following functions to be used within an expression.

FILE Determines the attributes of a fue

DT Determines the type of device on which a file resides

NUM Determines if a parameter has a numeric value

60493800 C 5-1 •

CCL provides verbs and commands to control processing of control statements (including CCL statements) in a fIle
other than the original job file. A group of these separate control statements is called a procedure. The following CCL
verbs deal with procedures.

BEGIN Initiates processing of a procedure

REVERT Returns processing from a procedure to the control statement sequence that called it

A procedure is identified to CCL and to the NOS/BE operating system by the following header statement.

.PROC Identifies the statements that follow as a procedure

A command is similar to a directive, controlling p~ocessing of data within a procedure. Commands are as follows:

. DATA Allows data needed by a procedure to be stored within that procedure

.EOR Causes an end of record to be written on a data file

.EOF Causes an end of partition to be written on a data fIle

* Allows the user to include comments in a procedure; these comments are not printed in the dayfIle

CCL statements have a syntax similar to, but not identical to, the operating system's control statement syntax. The
asterisk (*) and all system separators are valid CCL separators. The separator following the verb in" a CCL statement
must be a comma or a left parenthesis. A CCL statement must be terminated by a period or a right parenthesis.
The separator between parameters must be a comma. Literals ($-delimited character strings) are recognized within all
CCL statements but might not be evaluated during substitution within a procedure (covered later in this section). CCL
ignores all blanks in CCL statements, except blanks within a literal. Blanks cannot be used within a verb. Any eCL
statement may continue over more than one card or line if the last character of a continued card or line is a valid CCL
separator.'

EXPRESSIONS

A CCL expression consists of operators and operands. It may include other expressions that are enclosed in paren­
theses. For example, the expression 2*(3+5) contains another expression, 3+5.

An operator can be arithmetic, relational, or logical. Parentheses are treated as operators; however, they do not imply
multiplication.

An operand can be anyone of the following.

Integer constant

Symbolic name

• 5-2

A character string of 1 to 10 characters. An integer constant can be either numeric or
a literal

An alphanumeric character string of 1 to 10 characters that is recognized by CCL
(A symbolic name has a numeric value, which is either an installation-defmed constant
or a user- or CCL-defmed variable.) .

60493800 C

CCL fup-ction

Expression

A special operand recognized by CeL; determines attributes of a fue or a parameter
(An expression may consist entirely of a CCL function.)

A CCL expression enclosed in parentheses; expression is evaluated, and the result be­
comes an operand

For all practical purposes, an expression may be as long as the user wishes, provided there is either a) or a . within
the first 50 operands.

CCL assumes any character string beginning with a numeric character is numeric. It cannot contain any
nonnumeric characters, except for an option post' radix of B or D. Any alphanumeric string must begin
with an alphabetic character.

Expressions may be used with CCL control statements IFE, WHILE, DISPLAY, and SET and the FILE function.
The separator preceding an expression is not part of the expression; using a comma for this separator, rather than
a left parenthesis, improves readability. The separator following the expression must be a comma. Computations
are accurate to 10 decimals digits (20 octal digits), and overflow is ignored.

OPERATORS

The three types of eeL operators are arithmetic, relational, and logical. Arithmetic operators perform the various
arithmetic operations. The relational operators produce a value of one if the relationship is true and zero if it is'
false. Logical operators evaluate the fu1160 bits of each operand, producing a 60-bit result. If a eCL statement or
relational operator evaluates this result as true or false, eeL considers a result with any bits set to be nonzero
(true) and a result with no bits set to be zero (false). Any operand may be preceded by a leading plus or minus.
A leading plus is ignored, and a leading minus indicates a negation.

ARITHMETIC

+ Addition

Subtraction

* Multiplication

/ Division

** Exponentia tion

60493800 C
5-3 •

RELATIONAL

.EQ. or =

.LT. or <

.GT. or>

.NE.

.LE.

.GE.

LOGICAL

.EQV.

.OR.

.AND.

.XOR.

.NOT.

ORDER OF EVALUATION

Exponentiation

Multiplication, division

Equal

Less than

Greater than

Not equal

Less than or equal

Greater than or equal

Equivalence (If A.EQV.B is true, all 60 bits are set.)

Inclusive OR (Any bit set in either A or B is set in the result.)

AND (If A and B are true, A.AND.B is true.)

Exclusive OR (A bit is set in the result if the corresponding bit is set in either A or B
but not both.)

Complement (If A is 0 or no bits are set, NOT A is all 60 bits set.)

Addition, subtraction, negation

Relations

Complement

AND

Inclusive OR

Exclusive OR, equivalence

• 54 60493800 C

INTEGER CONSTANTS

An integer constant is generally numeric, although it may also be a literal. It must be 10 characters or less, including
the post radix if it exists. Integer constants may be specified with or without a post radix. If the post radix is omitted,
the constant is assumed to be decimal. A post radix of B indicates octal, and a post radix of D indicates decimal.

A literal (a $-delimited character string) must be 10 characters or less, excluding the $ delimiters. If CCL encounters
a literal, it is evaluated, and its display code value is right-justified and processed as an integer constant.

SYMBOLIC NAMES

A symbolic name is an alphanumeric character string that points to a location where a numeric value is stored.
These ntJmeric values may be defined at installation o'r may be variables set by the user or by CCL. All variables,
except EM, OT, and SYS, have an initial value of zero.

The symbolic names in table 5-1 and the symbolic names with true or false values are valid in any CCL expression
but meaningless within FILE or DT functions. FILE and DT functions have their own symbolic names.

Each symbolic name in table 5-1 has one or more of the following attributes.

Local

Set

Compare

60493800 C

An X in this column indicates that the value is saved by a BEGIN statement before
initiating a procedure and restored by a REVERT statement upon termination of a
procedure (procedures are explained later in this section).

An entry in this column indicates that the symbol has a variable value. The entry
specifies how the symbol obtains its value. One or more of the following characters
may be listed in this column for each symbolic name.

B Set by BEGIN

o Set by the operating system

R Set by REVERT

U Set by a user on the SET control statement or the SETJCI macro

An entry in this column is a symbolic name. The symbolic name with a compare
entry is a subset of that entry name and may be compared to it. For example, CPE
has the entry EF in the compare column. To find out if an error was a CPU abort,
the value of EF could be compared to the value of CPE using a CCL statement, such
as IFE (covered later in this section). For example, if IFE, EF=CPE, LS. is-true,
the error was a CPU abort.

5-5 •

TABLE 5-1. SYMBOLIC NAMES WITH ARITHMETIC VALUES

Name Local Set Compare User's Range of Values Description

RI X U Oto I3I071Dor377777B Value in control register 1. I.

R2 X U Oto 131071Dor 377777B Value in control register 2.

R3 X U Oto 131071Dor 377777B Value in control register 3.

RIG U Oto 131071Dor377777B Value in global control register I.

DSC X U,O Oand1 Dayfile skipped control statement flag.

EF X U,O o to 620 or 76B Error flag.

EFG U,O o to 62D or 76B Global error flag.

TLE EF Time limit error; time limit was exceeded.

ARE EF Arithmetic error; user had a floating-
point arithmetic error or a read or write
outside of SCM or LCM range.

. PPE EF PPU abort; a peripheral processor program
aborted.

CPE EF CPU abort; job supervisor detected an
error, or the system processed an ABORT
macro and found no REPRIEVE macro.

MNE EF Monitor call error; a user's RA + 1 request
contained an error.

ODE EF Operator drop; a drop aborted the job.

PSE EF Program stop error; a program stop (zero
instruction word) occurred in the user's
program.

ESE EF EXIT ,So processing; an ABORT macro
with S option initiated a search for an
EXIT ,So statement.

MSE EF Mass storage limit; the limit was exceeded.

OT 0 Job origin type .

• S-6 60493800 C

TABLE 5-1. SYMBOLIC NAMES WITH ARITHMETIC VALUES (Contd)

Name Local Set Compare User's Range of Values Description

SYO OT System job; the job originated from the
system console.

BCO OT Batch job; the job was submitted at the
central site or from a terminal. Job output
is sent to the central site.

EIO OT Remote batch job; the job was submitted
from a terminal and output is sent to
a terminal.

TXO OT Time-sharing job; a statement was sub-
mitted from a terminal through
INTERCOM.

SYS 0 The host operating system.

NOSB SYS NOS/BE operating system.

SC2 SYS SCOPE 2 operating system.

PNL B,R Procedure nesting level:
0 Job control statements.
1 1st level procedure.

50 50th level procedure.

EM U o to 7B Current exit mode; user sets on the
MODE statement.

MFL 0 Maximum field length.

MFLL 0 Maximum ECS field length.

TIME 0 Current time of day (hhmm).

VER 0 Version of the operating system.

60493800 C 5-7 •

The following symbolic names have true or false values.

TRUE 1

T TRUE=1

FALSE o

F FALSE=O

SWn SENSE switch, n=I-6

The symbolic names Rl, R2, R3, and Rl G are variables the user can set equal to an expression. The expression
must consist of symbolic names or integer constants. CCL evaluates the expression as a numeric value (for example,
R1 + 1 is a valid expression).

DSC is also a variable, but both the user and CCL control its value. Unless the user specifies the value of DSC to be
one, DSC remains zero and skipped statements are not printed in the dayfile. When DSC is set to one, any skipped
statements that follow are printed in the dayfile. Some eCL error processing changes DSC to one, forcing skipped
statements to be printed. Skipped statements have a .CCL.. prefix.

The system and the user may set the values of EF and EFG. As the system encounters errors, eCL
changes the value of EF to the numeric value of the error type. After processing a procedure (covered
later in this section) CCL sets the value of EFG to the procedure's value of EF, unless the value of
EFG is already nonzero. CeL's range of values for EF and EFG are the numeric values of symbolic
names TLE, ARE, PPE, CPE, MNE, ODE, PSE, ESE, and MSE; their values are system defmed.

CCL controls the values of OT and SYS. The range of values for OT are the installation-defined, numeric values of
SYO, BCO, EIO, and TXO. The range of values for SYS consists of the numeric values of NOSB and SC2. SC2 and
NOSB are defined at installation time.

If the user-defined numeric value of a symbolic name exceeds the given range of values, CCL truncates the value
retaining the sign, if signed, without issuing an error message.

In the CYBER 170 series, EM is a 4-digit octal value, rather than a single-digit octal value. To reduce the value of
EM to the single-digit set by the MODE statement, use the expression EM.AND.7. To ensure correct evaluation,
enclose this expression in parentheses.

CONDITIONAL STATEMENTS

The following conditional control statements bracket groups of other control statements to be conditionally processed
or skipped.

IFE

SKIP

ELSE

ENDIF

• 5-8 60493800 C

IFE, SKIP, and" ELSE statements precede a group of control statements. IFE ~d ELSE conditionally skip or
process the statements. (SKIP always causes skipping.) An ELSE or ENDIF statement follows the group of
statements, terminating skipping initiated by an IFE,SKIP, or ELSE statement.

All conditional statements require a label string parameter. The label string consists of 1 to 10 alphanumeric char­
acters, beginning with an alphabetic character. When an IFE, SKIP, or ELSE statement (with a label string) initiates
skipping, skipping continues until eeL encounters a terminating statement (ELSE, ENDIF) with a matching label
string.

If no such terminating statement is found while skipping within the job control statement record, eeL skips all
remaining statements and the job ends. If no such terminating statement is found while skipping within a called
procedure (covered later in this section), eeL skips all remaining statements in the called procedure, issues an abort,
and continues processing with thejob or calling procedure.

NOTE

If the job's time limit is exceeded while eeL is skipping, the job aborts and the position
of the job control statement file is undefmed. eeL stops skipping, and the system
begins searching for an EXIT statement. Results may be altered; the user should increase
the time limit and resubmit the job.

By default, skipped control statements are not written on the dayfile. The SET statement can change this de­
fault, allowing skipped statements to appear in the dayfile.

IFE

The IFE statement conditionally causes the skipping of a group of succeeding control statements. If the expression
is true, the statements which follow are processed; if not, the statements are skipped according to the label string.
ELSE or ENDIF terminates the skip. The separator following the expression must be a comma.

The format of IFE is:

IFE,exp, Is.

Both parameters are positional and required.

exp ceL expression. Character strings must be integer constants, symbolic names, or eCL
functions.

Is Label string; 1 to 10 alphanumeric characters, beginning with an alphabetic character.

Example:

IFE,Rl.GT.7,JUMP.
COMMENT. 1
COMMENT.2
ENDIF,JUMP.
REWIND,FILEI.

60493800 C

If the value in control register 1 (Rl) is greater than 7, the comments are
processed. If not, eeL skips to the ENDIF,JUMP. statement. Whether
the value is greater than 7 or not, the system rewinds FILE 1.

5·9 •

SKIP

The SKIP control statement causes unconditional skipping of the control statements that follow. Skipping is ter­
minated by an ENDIF statement.

The format of SKIP is:

SKIP,ls.

The parameter is required.

Is Label string; 1 to 10 alphanumeric characters, beginning with an alphabetic character.

Example:

SKIP,HALT. SKIP initiates skipping and all the following statements are ignored until
ENDIF.

ENDIF,HALT.

ELSE

The ELSE statement can either terminate or initiate skipping. It terminates skipping when used in conjunction
with IFE, provided that the label strings match. If the IFE statement does not initiate skipping (the expression
within the statement is true), ELSE initiates skipping and is terminated by an ENDIF statement with a matching
label string. ELSE does not terminate skipping initiated by a SKIP statement or another ELSE statement.

The format of ELSE is:

ELSE,ls.

The parameter is required.

Is Label string; 1 to 10 alphanumeric characters, beginning with an alphabetic character.

Example:

IFE,DSC=O,GO.

COMMENT. THIS IS NOT SKIPPED.

ELSE,GO.

COMMENT. TillS IS SKIPPED.

ENDIF,GO.

• 5·10

Since the value of the dayfile skipped statement flag (DSe)
is 0 by default, the IFE expression is true; no statements
are skipped. When the ELSE,GO. statement is processed,
ELSE initiates skipping. The ENDIF,GO. stateinent terminates
the skipping.

60493800 C

ENDIF

The ENDIF statement terminates skipping when used in conjunction with IFE, ELSE, or SKIP statements. If not
terminating a skip, ENDIF is ignored in terms of processing. It is, however, printed in the dayftle. The label
strings of the statement that initiates skipping (IFE,ELSE, or SKIP) and the ENDIF statement must match. If
CeL encounters an ENDIF statements with an unmatched label string, eeL ignores it.

The format of ENDIF is:

ENDIF)s.

The parameter is required.

Is Label string; 1 to 10 alphanumeric characters, beginning with an alphabetic character.

Example:

IFE,R2.LE.6,LSI.

SET,R2=R2+1.

ENDIF,LSI.

DISPLA Y,R2.

ITERATIVE STATEMENTS

If the value in control register 2 (R2) is less than or equal to 6,
the SET statement increases· R2 by 1. If the value of R2 is
greater than 6, IFE skips the SET statement, and ENDIF
terminates that skip. The DISPLAY statement prints the value
of R2 in the user dayfile, whether the IFE expression is true or
not. (The SET and DISPLAY statements are covered later in
this section.)

ceL provides an iterative capacity. The WHILE and ENDW control statements bracket a group of control state­
ments and cause it to be processed and reprocessed as long as the WHILE expression is true (can be zero times if
the expression is never true). When the WHILE expression is no longer true, eeL processes the WHILE statement,
evaluates the expression as false, and skips all statements until it finds the ENDW statement.

The WHILE and ENDW statements require a label string parameter. The label string consists of 1 to 10 alpha­
numeric characters, beginning with an alphabetic character. It identifies the group of statements to be conditionally
reprocessed.

The format of WHILE is:

WHILE,exp,ls.

Both parameters are positional and required .. The separator following exp must be a comma.

exp A eeL expression. Character strings must be integer constants, symbolic names, or CeL functions.

Is Label string; 1 to 10 alphanumeric characters, beginning with an alphabetic character.

60493800 C 5-11 •

The format of ENDW is:

ENDW,ls.

The parameter is required.

Is Label string; must match the label string on a WHILE statement.

The following rules apply to bracketing.

I. An ENDW statement brackets only that WHILE statement which has a matching label string.

2. When an expression is false and an ENDW with a matching label string is not found, a WHILE
statement skips all remaining control statements in the control statement record.

3. The label string of a WHILE statement must be unique among all WHILE statements within the same
procedure (procedures are explained later in this section). Label strings of WHILE statements within the
job control statement record must be unique among all WHILE statements in the job.

Example:

SET,RI=I.
WHILE,RI<5,FROG.
FTN,I=TOAD.
LGO.
REWIND,LGO.
SET,RI =RI +1.
ENDW,FROG.

The value of control register 1 (RI) is set to I. The FTN compiler
takes input from me TOAD and executes different FORTRAN jobs
as long as the value of RI is less than 5 (four times). Each pass
through the loop increases the value of RI by I.

ADDITIONAL CCl STATEMENTS

The following CCL statements affect the values of symbolic names. The DISPLAY statement, however, only prints an
evaluated expression in the user dayfile, and that expression need not contain a symbolic name.

DISPLAY

The DISPLAY control statement evaluates an expression and sends the result to the user dayfIle (but not the system
dayfIle) in both decimal and octal format. The largest decimal value which may be displayed is 10 digits. If the
value is larger than 10 digits, GT followed by 9999999999 is displayed. If the value is negative and larger than 10
digits, LT followed by a minus and 9999999999 is displayed. In octal code, numbers as large as 20 digits can be
displayed .

• 5-12 60493800 C

The format of DISPLAY is:

DISPLAY,exp.

The parameter is positional and required.

exp A CCL expression. Character strings must be integer constants, symbolic names, or CCL functions.

Examples:

1. DISPLAY, 1111111B*10000B.

produces

H227132928 11111110000B

2. DISPLAY,SYS.

produces

4 4B

3.· DISPLAY,2**37.

produces

GT 99999999992ooo00000ooooB

4. DISPLAY,-2**37.

produces

LT -9999999999 -20oooooooooooB

SET

The SET statement allows the user to set the value of symbolic names. Only a subset of the symbolic names known
to CCL may be set. This subset consists of the control registers (R1, R2, R3, and RIG), the error flags (EF and
EFG), and the dayftle skipped control statement flag (DSC). The control registers are 18-bit signed quantities,
and the error flags are 6-bit unsigned quantities. If the value of the expression is too large, it is truncated (retaining
the sign if signed), and no error message is issued. DSC is a single bit, which is set to one if the expression value is
nonzero.

60493800 C 5-13 •

The format of SET is:

SET ,sym=exp.

The parameters are positional and required.

sym Symbolic name to be set.

exp A CCL expression. Character strings must he integer constants, symbolic names, or CCL
functions.

Examples:

1. Job Dayfile

SET,R3=4.
DISPLAY,R3.

44B
SET ,R3=R3+ 1.
DISPLAY,R3.

- 5 5B

2. IFE,EF=CPE,SKIP.
SET,Rl=l.
ENDIF ,SKIP.
DISPLAY,Rl.

3. Input

SKIP,HERE.
COMMENT.NO. 1
ENDIF ,HERE.
SET,DSC=l.
IFE,DSC=O,THERE.
COMMENT.NO. 2
ENDIF ,THERE.

The value of control register 3 (R3) is set to 4, as the
DISPLAY statement shows. On the second SET statement,
the expression R3+ 1 increments the value of R3 by 1.

IFE compares the value of the error flag (EF) to the value
indicating a CPU abort error (CPE). If they are equal, the
value of control register 1· (Rl) is set to 1. If the values of
EF and CPE are not equal, the SET statement is skipped.
Whether EF equals CPE or not, the value of Rl is displayed
as 0 or 1.

Job Dayfde

SKIP,HERE.
ENDIF ,HERE.
SET,DSC=l.
IFE,DSC=O,THERE
.CCLooCOMMENT.NO.2
ENDIF ,THERE.

In this example., the value of DSC is initially O. COMMENT.NO.1 is not printed in the dayfIle. DSCis
set to 1, making the IFE expression false. CCL skips to ENDIF,THERE. but prints COMMENT.NO.2
in the dayfIle.

FUNCTIONS

CCL functions determine attributes of a rue with one exception, the NUM function analyzes parameters.
CCL functions can be used as an entire CCL expression or as a part of an expression. These functions
are not statements in themselves and must be part of a CCL statement. The CCL functions are as follows:

FILE Determines the status and attributes of a fIle

DT Determines the device type of a file

NUM Determines if a parameter has a numeric value

• 5-14 60493800 C

FILE
~

The FILE function determines the attributes of a fIle. Each symbolic name listed in the expression is evaluated as
true (l) or false (0). Whenever more than one symbolic name is used in an expression, FILE analyzes each single
name and applies the operators to the resultant values [that is, FILE (lfn, sname 1 +sname:z) translates to FILE
(lfn,snamel)+FILE(lfn,sname:z)]. The result of a FILE function using arithmetic operators is not necessarily 1
or O.

The format of the FILE function is:

FILE(1fn,exp)

The parameters are positional and required.

lfn Logical name of the file to be analyzed.

exp An expression consisting of operators and FILE symbolic names; may consist of one FILE symbolic
name.

The FILE function is used as an expression or part of an expressioh in a CCL statement. The expression within a
FILE function may not include the NUM function or another FILE function.

The FILE function must use exactly the same combination of separators and terminators shown in the format.
If there is any deviation, CCL considers it an error and aborts the job.

Only the DT function or the following symbolic names can be used within the expression of a FILE function. Any
other symbolic name or character string within the expression is unknown or an implicit DT function (see DT
later in this section).

MS File is on mass storage.

OP File is opened.

AS File is attached to the user's job (that is, NOS/BE recognizes the me's lfn; the ftle exists).

IN File is INPUT.

PR File is a print rue.

PH File is a punch rue.

PF File is an attached permanent file.

LO File is local [that is, the rue is a temporary (scratch) file; attached permanent mes are not local] .

TT File is connected to a terminal.

TP File is on a magnetic tape.

60493800 C 5-15 •

EOF The last operation moved forward and encountered an EOP; the fue is now positioned after the EOP.

BOI File is positioned at the beginning-of-information (only valid for mass storage).

LB File is labeled.

WR File has write permission. (Write permission is modify p~rmission, extend permission, or both.)

RD File has read permission.

MD File has modify permission.

EN File has extend permission.

Examples:

1. IFE,FILE(WHOFILE,LO.OR.TP),LEAP.
CATALOG,WHOFILE,PERMFILE,ID=MINE.
ENDIF ,LEAP.
UNLOAD,WHOFILE.

2. IFE,FILE(MYFILE,BOI),MOVE.

DT

COPY,INPUT,MYFILE.
ELSE,MOVE.
REWIND,MYFILE.
COPY,INPUT,_MYFILE.
ENDIF ,MOVE.

If WHO FILE is either a temporary file (LO) or on a
magnetic tape (TP), WHOFILE is cataloged as permanent
file (PERMFILE) on mass storage and unloaded. If
WHOFILE is neither on a temporary file nor on a
magnetic tape, WHOFILE is returned to the system
by UNLOAD.

MYFILE is an attached permanent file with all permissions
granted. If MYFILE is at the beginning-of-information,
it is modified by COPY. The ELSE statement initiates
skipping that is terminated by ENDIF. If MYFILE is
not at the beginning-of-information, ELSE stops the IFE
SKIPPING; MYFILE is then rewound and modified. The
ENDIF statement is ignored.

The DT function determines information about the device type on which a file resides. DT may be used only within
the expression of a FILE function. The value of theDT function is true if the 2-character mnemonic (dt) matches
the 2-character device type mnemonic of the file. The mnemonic must be enclosed in parentheses, and the left
parenthesis must be preceded by DT.

The format of the DT function is:

FILE (lfn, ... DT(dt) ...)
.~

expression

The parameters are positional and required.

Ifn Logical name of file to be analyzed.

dt A 2-character mnemonic indicating a device type. An entire FILE expression may consist of dt.

See Device Types, section 6 for the valid device type mnemonics .

• 5-16 60493800 C

CCL assumes that any 2-character symbol within a FILE function that is not a FILE function symbolic name
is an implicit DT function (for example, if MT is found, it is treated as DT(MT) and is false unless the device type
happens to be MT).

Examples:

In the following examples, ftle FRANK resides on a 7-track magnetic tape.

I. DISPLAY,FILE(FRANK,DT(MT».

yields

1 IB

It is true that FRANK is on a 7-track tape; therefore, the value 1 is displayed.

2. IFE,FILE(FRANK,TP.AND.DT(MT»,LSI.
COPY,FRANK,OUTPUT.
ENDIF,LSI.
UNLOAD,FRANK.

FRANK is on a 7-track magnetic tape; therefore, it is copied to output and then unloaded. If the DT
function were false or FRANK were not on magnetic tape, FRANK would be unloaded.

NUM

The NUM function determines if a character string is numeric or not. It evaluates the character string as true (1)
if it is numeric or false (0) if it is nonnumeric. NUM may be used as an expression or as part of an expression in a
CCL statement. The NUM function may be more useful within a procedure. (An example of the NUM function used
within a procedure can be found in the discussion of procedures later in this section.) CCL considers any deviation
from the given format an error and aborts the job.

The format of the NUM function is:

NUM(c)

The parameter is required.

c A character string; 1 to 40 characters. Special characters must be $-delimited.

Example:

IFE,NUM(FTNFILE)=O,GO.
FTN,I=FTNFILE.
LGO.
ENDIF,GO.
COMMENT. DO SOMETHING ELSE.

60493800 C

The character string, FTNFILE, is nonnumeric; therefore, the IFE
expression is true. The FORTRAN job is compiled and executed,
and the comment is processed.

5-17 •

PROCEDURES

A procedure is a group of control statements (including CCL statements) separate from the job control statement
record, which may be called by a job. Calling a procedure provides a simplified method of processing that group
of control statements. A procedure can be called by a job_repeatedly, by another procedure, or by itself.

The discussion of procedures is broken into the following four parts.

1. Procedure Residence

Describes the various ways a procedure may be stored.

2. Procedure Structure

Explains the composition of a procedure; it contains the following subsections.

a. Procedure Header Statement

Explains the CCL statement required of all procedures.

b. Procedure Body

Discusses the special capabilities of all statements within a procedure other than the procedure
header statement.

3. Procedure Call and Return

Describes how a procedure is inserted into the job control statement stream; it contains the following
subsections.

a. Procedure Call

Describes how a procedure may be called by its name or by a BEGIN statement. These two types
of calling statements are referred to as the procedure call statement. This subsection explains
ways the parameters on a procedure call statement may be processed and how these parameters may
be substituted into the procedure body.

b. Procedure Return

Explains how processing returns from a procedure to the calling job or procedure. This is done auto­
matically by ceL or by the user with a REVERT statement. This subsection also indicates how the
values of various symbolic names are affected by a return from a procedure.

4. Procedure Commands

Describes the following special CCL commands which may be used within a procedure .

. DATA Permits data to be stored within a procedure .

. EOR Writes an EOR onto the data file .

. EOF Writes an BOP onto the data file.

* Enables the user to include in a procedure comments that will not be printed in the user dayftle .

• 5-18 60493800 C

PROCEDURE RESrOENCE

A procedure is stored as a record (system-logical-record) on a file or library. When CCL reads the procedure, it leaves
the ftle positioned at the beginning of the record following the procedure. Hence, data can be stored after the proce­
dure to be processed with the procedure. A procedure may have the following relationships to the fIle on which it is
stored.

One procedure may occupy the entire ftle (one record).

Several procedures may reside on the same file in records stored in a sequential manner. When the procedure is
specifted by name, the file is searched for this procedure in a circular fashion. CCL automatically rewinds the me
and continues searching if an EOI is reached before the procedure is found. If the entire file is searched and the
procedure is not found, CCL aborts the job.

Processing a procedure does not alter the contents of the me from which it was obtained.

A fue containing procedures may be a permanent ftle.

A procedure may be stored in rotating mass storage if the file containing it is sequential.

A procedure may be stored on a library.

A procedure may reside on the input file of the calling job; however, CeL does not rewind the input file if an EOI
is encountered before the procedure is found.

To save a procedure through INTERCOM program text editor (EDITOR), use the NOSEQ parameter on the SAVE
command. If the NOSEQ parameter is omitted, the EDITOR line numbers are not removed and interfer with CCL
processing.

PROCEDURE STRUCTURE

A procedure consists of a procedure header statement and a procedure body. The procedure must be named and begin
with the header statement. The body contains all statements between the header statement and an end of record.
The body must contain at least one control statement. All control statements are legal within a procedure, including
CCL statements. The body may also include special procedure commands and data.

PROCEDURE HEADER STATEMENT

A procedure starts with a procedure header statement that declares the name of the procedure and identiftes any
formal keywords and their default values. Unless it contains an error, the header statement is not printed in the dayfIle.
The characters . PROC must be followed by a comma. The header statement must be terminated by a period. The
separator between parameters must be a comma. A header statement may continue over more than one card or line of
input, provided that a separator is the last character on each card or line. Procedure names can be I to 7 alphanumeric
characters. They may begin with or consist entirely of numeric characters.

60493800 C 5·19 •

The format of the procedure header statement is:

.PROC,pname,Pl P2,···,Pn·

The pname parameter is positional and required; parameters Pi are optional.

pname The name of the procedure (may be 1 to 7 alphanumeric characters beginning with a numeric character).
pname cannot be BEGIN.

Pi A user-created parameter in one of the following forms.

fk
fk=defaultl
fk=default 1 / default2

Formal keyword
Formal keyword with default
Formal keyword with two defaults

fk is its own defaultl value if a default value is not specified. If two defaults are specified, the user can select only one
on the procedure call statements. The form fk= may be used to specify a null default. The formal keywords must be
1 to 10 alphanumeric characters; formal keywords beginning with or consisting of numerics are legal. The defaults
may be 1 to 40 alphanumeric characters. The values defaultl and de fault 2 may be $-delimited character strings. The
number of parameters is limited to an installation-defined number. The released default value is 50.

Formal keywords appear in the procedure body and may be replaced by their default values during substitution.
Substitution occurs when the procedure is called, replacing formal keywords with default values or values from the call
statement.

A formal keyword may be $-delimited in any Pi form; however, it may contain only alphanumeric characters. If it
contains special characters, substitution does not occur.

There are two special defaults which can be used in the procedure header statement. These defaults are ::FILE and
=DATA (#FILE and :/I DATA in ASCII).CCL supplies the value of these defaults. They can be overridden just as
any other default of a formal parameter by specification on a procedure call statement.

If the default specification is =FILE, its value is the name of the me from which the procedure was read, and the
record after the procedure is read. If the procedure resides on a library, using:: FILE produces the characters
': LIB during substitution. When the default specification is =DATA, the value is the name of the default
temporary file to which a .DATA command writes data statements. (The .DATA command is explained later in
this section.)

Examples:

1.

2.

• 5-20

. PROC,ZZZ,Pl=:FILE.
FTN,I=Pl.

. PROC,SNORE,P2=:DATA.
FTN,I=P2.

After procedure ZZZ is called, the FTN compiler looks for input from
the file containing procedure ZZZ. The record following ZZZ is read .

After procedure SNORE is called, the FTN compiler searches for input
from the file generated by the. DATA command.

60493800 C

PROCEDURE BODY

The procedure body consists of all statements which follow the procedure header statement. The procedure body can
contain any control statement including CCL statements, as well as calls to other procedures.

The procedure body may use any of the formal keywords defmed on the procedure header statement. When a
procedure is called, CCL scans the statements of the procedure body before processing. The values specified by the
parameters in the procedure call statement are substituted for the occurence of the formal keywords in each statement
of the procedure body. If a formal keyword is not indicated on the call statement, defaultl from the header statement
replaces occurrences of the formal keyword. A parameter on the call statement may indicate default2.

The right arrow, - (underline character in ASCII), is reserved by CCL for use as a linking character. It may be used
Within the procedure body to separate two character strings when they do not have a standard separator between
them. Mter processing and substitution, any right arrows are removed, and the character strings are joined.

An equivalence symbol,: (* in ASCII), inhibits substitution of a character string if it immediately precedes the string.
The character string is not compared to the list of formal keywords, substitution is inhibited, and the equivalence
symbol is removed. If a separator immediately follows an equivalence symbol, CCL accepts the separator without
examination. Consecutive equivalence symbols yield one equivalence symbol, and substitution occurs if a formal
keyword follows. An equivalence symbol followed by a right arrow produces one right arrow, and the character
string that follows is substituted if it is a formal keyword. When two character strings are separated by a right
arrow followed by an equivalence symbol, CCL joins the character strings without substitution of the second string.

Examples:

1. .PROC,INIDBIT ,1=BB.
FTN,:I=I.
COMMENT.: I QUIT,QU-I-T. QU-:I-T.

Substitution yields:

FTN,I=BB.
COMMENT.I QUIT, QUBBT, QUIT.

Only the single character I is recognized as a formal keyword; therefore, character string QUIT is not
affected by substitution. When I is separated by right arrows, QU, I, and T become separate character strings.

2. . PROC,SUB,I=BB.
FTN,I=I.
COMMENT.::: I QU:-I-T, QU:-IT.

Substitution yields:

FTN,BB=BB.
COMMENT. == BB QU-+BBT,QU-IT.

Without the equivalence symbol before I, the FTN parameter is meaningless after substitution.

60493800 C 5-21 •

PROCEDURE CALL AND RETURN

A procedure is stored outside the job control statement record and CCL logically inserts it into the job control stream
when the job calls it. A call statement in the job calls the procedure. After the final processed control statement of the
procedure, a CCLt - or user-issued REVERT statement continues processing with the job control statement after the
call statement (figure 5-1).

JOBFILE

JOBCARD
•
•
•

~--EOR----t

INPUT
FILE

PROCEDURE

.PROC
•
•
•

REVERT
----EOR ----

Figure 5-1. Calling a Procedure from a Job

If called by a call statement in another procedure, the procedure is logically inserted into that procedure's control
statement stream. Mter the final processed control statement of the procedure, a CCLt - or user-issued REVERT
statement continues processing in the calling procedure with the control statement after the call statement (figure 5-2).

FIRST
PROCEDURE

.PROC
•
• •

BEG IN ----+---op
•
•
•

SECOND
PROCEDURE

.PROC
•
•
•

REVERT REVERT
~--EOR---- '----- EOR __ ..-J

Figure 5-2. Calling a Procedure from Another Procedure

t CCL issues a REVERT statement if the user does not supply one within a procedure.

• 5·22
60493800 C

PROCEDURE CALL

Procedures may be called (caused to be processed) by a procedure call statement in a job or procedure. The call
statement is either a BEGIN or call-by-name statement. The term call statement refers to both forms of the statement.
The BEGIN statement can call a procedure on a permanent file, and the call-by-name statement can call a procedure on
a library. Both statements can call a procedure on a local fIle.

The syntax of the call statement is similar to that of other control statements. The call statement must be terminated
by a period or a right parenthesis. The separator following each parameter must be a comma. The call statement may
continue over more than one card or line or input if a separator is the last character on each card or line.

BEGIN STATEMENT

The format of BEGIN is:

BEGIN,pname,pfile,p1 ,P2, ... 'Pn·

The pname and pfile parameters are positional. When the user does not specify a parameter, CCLassumes
a default value. Parameters Pi are optional.

pname

pfIle

Pi

The procedure name as declared on the header statement. Default is the next procedure
on fIle pfIle. If the default is used and pfIle is at end of information, CCL rewinds pfile and
calls the first procedure.

The name of the file where procedure pname is located. Default is an installation­
defined file name. If the default is used, eCL searches for a local file with the default
fIle name, then attempts to attach a permanent file with the default file name and id
PUBLIC.

A parameter having one of the following forms:

fk A formal keyword; fk is the same keyword used in the related
parameter on the procedure header statement.

v A value; may be 1 to 40 characters. If any characters except a
slash (/) or a leading minus are nonalphanumeric, v must be a
literal (for example, AlBIC I is a 5-character specification for a
formal keyword).

fk=v Value v is substituted for formal keyword fk.

To call a procedure pname on a file pfIle, CCL searches for a local fIle pfile. If no local pfIle is found, CCLattempts
to attach permanent fIle pfile with user id PUBLIC. Once pfile is located, CCL searches for procedure pname. If pfIle
or pname is not found, the job aborts. Parameters correspond to formal keywords declared on the header statement.
If the user needs only default values, the BEGIN statement may have no parameters. The separator following the
verb BEGIN must be a comma or a left parenthesis.

60493800 C 5-23 •

CAL~BY-NAMESTATEMENT

The format of call-by-name is:

The pname parameter must be specified; parameters Pi are optional.

pname

Pi

The procecure name as declared on the header statement. There is no default.

A parameter having one of the following forms (see BEGIN Statement for further
explanation):

fk A formal keyword.

v A value; 1 to 40 characters.

fk=v Value v is substituted for formal keyword fk.

To call a procedure by name, CCL searches for a local file pname. If me pname is found, CCL looks for procedure
pname on it. If no local me pname is found, CCL searches the currently defined library set for p~ocedure pname. If
procedure pname is not found, the job aborts. Parameters correspond to formal keywords declared on the header
statement. If the user needs only default values, the call-by-name statement may have no parameters. The separator
following pname must be a comma or a left parenthesis.

SUBSTITUTION

When CCL calls a procedure, it searches the procedure body for any formal keywords declared on the header
statement. Substitution occurs when eCL replaces formal keywords in the procedure body with default values from
the header statement or values from the call statement. The parameters on the call statement determine which
values replace the formal keywords.

The two modes in which CCL processes parameters on the call statement are positional and equivalence. In posi­
tional mode, parameters are a value v or null. The values in the call statement are substituted for formal keywords
from the procedure header statement, replacing first keyword with first value, second keyword with second value,
and so on (that is, wherever the first keyword from the header statement appears in the procedure body, it is
replaced by the first value listed on the call statement, and so forth). A null parameter indicates the first default
from the header statement, not a null string. A null string may be specified only by fk=. If the user places an fk
parameter in positional mode, CCL treats it as a v parameter.

Example:

Procedure on File MYFILE

. PROC,EXAMPLE,I,J,K=XY.
REWIND,I,J ,K.

• 5-24

Calls and Expansion

BEGIN,EXAMPLE,MYFILE.
yields

REWIND,I,J ,XV.

BEGIN,EXAMPLE,MYFILE,B"Z.
yields

REWIND,B,J ,Z.

Explanation

All defaults from the header statement
are used.

B replaces I, and Z replaces K in the
procedure body. The empty parameter
indicates defaultl for J.

60493800 C

In equivalence mode, the parameter forms are fk=v and fk. If a formal keyw~rd with two defaults was specified on
the procedure header statement, the user can select the formal keyword's second default with an fk parameter. The
position of fk on the call statement is irrelevant. fk=v replaces formal keyword fk with value v, regardless of its
position. If a parameter is not specifie~ on the call statement for a formal keyword with either one of two defaults,
the first default is substituted. A null parameter is ignored in equivalence mode. If the user indicates more than one
value for a formal keyword on the call statement, the last specification is used. A v parameter in equivalence mode is
an error. CCLissues·an error message and aborts the job.

fk=v always specifies fk to have the value v. If v is null (fk=), appearances. of fk in the procedure bo4y are replaced
by a null string. fk=sym+, fk=sym+D, and fk=sym+B cause the numeric value of the symbolic name sym to be
converted to a decimal (fk=sym+,fk=sym+D) or octal (fk=sym+B) display code value. This value replaces fk in the
procedure body. sym may be numeric (for example, J=99+B). These forms are not valid on the header statement.

Example:

Procedure on File MYFILE

.PROC,EXAMPLE,I,J=A/B.
COPY,I,J.

Calls and Expansion

BEGIN,EXAMPLE,MYFILE.
yields

COPY,I,A.

BEGIN,EXAMPLE,MYFILE,I=F ,J.
yields

COPY,F,B.

BEGIN,EXAMPLE,MYFILE,I=,J=Z.
yields

COPY"Z.

Explanation

J is replaced by its first default;
I is replaced by its first and only
default.

F replaces I; the J parameter indicates
second default for J.

I=substitutes a null string for I; Z
replaces J.

The processing of parameters on the call statement is initially in positional mode. The switch to equivalence mode
occurs as follows:

Equivalence mode is entered at the first occurrence of an fk=v parameter within the call statement.

If the procedure header statement contains a formal keyword with a second default, equivalence mode is
entered after n parameters have been processed. n is the number of formal keywords in the header statement
up to, but not including, the first formal keyword with a second default.

Example:

Procedure on File AFILE

. PROC,SHOW,I,J=A,K=X,L=Y /Z.
RETURN,I,J ,K,L.

60493800 C

Call and Expansion

BEGIN,SHOW,AFILE,R,S,T ,L.
yields

RETURN,R,S,T ,Z.

Explanation

L=Y /Z is in fourth position, setting
n=3. R, S, and T are in positional
mode: L is in equivalence mode,
selecting the second default Z.

5-25 •

The rules of substitution in a procedure body are as follows:

Each line of the procedure body is divided into character strings and separators. If a character string is
identical to a formal keyword, substitution occurs unless inhibited by an equivalence symbol.

All nonalphanumeric characters are separators, including blanks and dollar signs that bracket literals.

A right arrow is deleted, linking preceding and following strings.

One equivalence symbol is deleted, inhibiting substitution of the character string it precedes.

CCL does not remove blanks.

Normally, a $-delimited (literal) value v in a call statement is evaluated before substitution. Outer dollar signs are
stripped off, and inner double dollar signs are reduced to a single dollar sign. However, if the related formal keyword
in the procedure header statement is also $-delimited, evaluation of the literal value does not occur. Instead, CCL
substitutes the literal with dollar signs intact. That is, substituting a literal value for a literal formal keyword pro­
duces a value that is delimited by double dollar signs.

PROCEDURE CALLS AND SUBSTITUTION EXAMPLES:

Procedure

1. . PROC,EXAMPLE,I),K=XY.

2.

REWlND,I,A,J ,K.

. PROC,ITEM,LGO,N=l/
1 OOOO,L=OUTPUT /LIST.
ITEMIZE,LGO,5L=L,5N=N.

• 5-26

Calls and Expansion

BEGIN,EXAMPLE,MYFILE,R,T,S.
yields

REWIND,R,A,T,S.

BEGIN,EXAMPLE,MYFILE,K=YY.
yields

REWIND,I,A,J ,YY.

BEGIN,EXAMPLE,MYFILE,R,
K=F,J=B.

yields
REWIND,R,A,B,F .

BEGIN ,ITEM"LFN.
yields

ITEMIZE ,LFN ,L=OUTPUT ,N= 1.

Explanation

Procedure EXAMPLE is on ftle
MYFILE. A is always rewound since
it is not a formal keyword.

Parameter processing remains in
positional mode.

Equivalence mode is entered at once
with K=YY. I and!J assume their
defaults.

Equivalence mode is entered with K=F.

Procedure ITEM is on a local me with
the CCL default file name.

:: before L and N in ITEMIZE inhibits
substitution of these two characters. '
First defaults apply to Land N. The
order of formal keywords on the header
statement does not affect the order of
substituted keywords on ITEMIZE .

60493800 C

Procedure

3. . PROC,TEST,LFN,PAR=D.
COMPASS,I=LFN,PAR.

CALL BY NAME EXAMPLE:

Procedure

.PROC,GERTIE,A,B,C,M=MODE,
BO=R/S.
COPYL,A,B,C. M IS BO

60493800 C

Calls and Expansion

BEGIN ,ITEM"L=B.
yields

ITEMIZE,LGO,L=B,N=l.

BEGIN ,ITEM"L,L.
yields

ITEMIZE,L,L= LIST ,N= 1.

BEGIN,ITEM"L,5.
Fatal error

BEGIN,TEST,NOW,FILEI.
yields

COMPASS,I=FILE I ,D.

BEGIN,TEST,NOW,FILE2,$L=
LIST,D$

yields
COMPASS,I=FILE2,L=LIST ,D.

Calls and Expansion

GERTIE(",MO)
yields

COPYL,A,B,C. MO IS R

GERTIE,R,C=NEW,BO.
yields

COPYL,R,B,NEW. MODE IS S

Explanation

B is substituted for L in equivalence
mode while LGO and N assume first
defaults.

The first L on the BEGIN statement is
in positional mode. Specifying the
second L in equivalence mode indicates
L's second default.

5 is in equivalence mode and does not
match any formal keyword.

Procedure TEST is on rue NOW.

FILEI is substituted for LFN in
positional mode; PAR assumes its
first default.

In positional mode, FILE2 is sub­
stituted for LFN, and L=LIST,D
is subsitutted for PAR. The PAR
substitution creates an additional
COMPASS parameter.

Explanation

Procedure GERTIE is on the currently
defined library set.

Processing remains in positional mode
with the empty parameters indicating
first defaults and MO replacing M.
Since the call statement does not
specify a value for BO, its first de­
fault (R) is used.

The first parameter is positional
mode, but equivalence mode starts
with C=NEW. Equivalence mode
causes BO to apply to BO, not M.

5-27 •

NUM FUNCTION SAMPLE PROCEDURE:

In the following example, the procedure SHOW is on ftle SAMPLE. The call statements indicate the procedure name
and the file the procedure is on.

Procedure

. PROC,SHOW,IN=FTNFILE.
IFE,NUM(IN)=O,LS.
FTN,I=IN.
LGO.
ENDIF,LS.
COMMENT. DO SOMETHING ELSE

PROCEDURE RETURN

Calls and Expansion

BEGIN,SHOW,SAMPLE.
yields

IFE,NUM(FTNFILE)=O,LS.
FTN,I=FTNFILE.
LGO.
ENDIF,LS.
COMMENT. DO SOMETHING ELSE

BEGIN,SHOW,SAMPLE,8.
yields

IFE,NUM(8)=0,LS.
FTN,I=8.
LGO.
ENDIF,LS.
COMMENT. DO SOMETHING ELSE

Explanation

No parameters were specifted
on the call statement;
therefore, IN assumes its first
default. The NUM function
evaluates the substituted formal
keyword as nonnumeric,
making the IFE expression
true. The FORTRAN job is
compiled and executed
and the comment is processed.

The value 8 on the call state­
ment is in positional mode
replacing IN. The NUM
function evaluates 8 as a
numeric, making the IFE
expression false. The FTN
and LGO statements are
skipped, and the comment
is processed.

A REVERT control statement causes processing to return to the calling job or procedure at the statement immedi­
ately following the procedure call statement.

The format of REVERT is:

REVERT.

or

REVERT ,ABORT~

• 5-28

Processing returns to the calling job or procedure.

Same as REVERT., except that after processing returns, CCL issues an
abort instead of a normal exit.

60493800 C

A REVERT statement can appear anywhere within a procedure. REVERT is commonly used in conjunction with
a conditional statement to cause premature return to the calling job or procedure. The user may place REVERT
at the end of a procedure, but this is unnecessary because CCL provides an implicit REVERT sequence. The
CCL following each statement identifies it as generated by CCL.

REVERT.CCL
EXIT,S.CCL
REVERT,ABORT.CCL

This is the REVERT sequence CCL provides after the last
processed statement of a procedure. If the last statement did
not produce a fatal error, CCL processes the REVERT.
statement. If the last statement did produce a fatal error,
the first statement in this sequence is skipped. CCL provides an
EXIT,S. statement to terminate skipping, and processes the
REVERT,ABORT. statement.

The user may wish to use a EXIT control statement to create a REVERT sequence. The EXIT statement produces
the same results whether it is in a procedure or the job fIle; it does not cause a return to the calling job or pro­
cedure. EXIT should be used with caution because it can terminate the job.

Example:

LGO.
REVERT.
EXIT,S.
DMP.
REVERT,ABORT.

If a fatal error occurs during the processing of the LGO.
statement, the system skips to the EXIT ,So statement.
SCM is dumped and CCL processes the REVERT ,ABORT.
statement. If no fatal error occurs during the processing of
the LGO. statement, CCL processes the REVERT. statement.

During a REVERT, CCL might change the value of symbolic names RI, R2, R3, EF, EFG, and DSC. Their values
can be set by the user before BEGIN and REVERT.

The values of control registers RI, R2, and R3, the error flag (EF), and the dayfIle skipped control statement flag
(DSC) are saved at the time of a procedure call and restored by a REVERT. If the value of control register RIG
is changed within a procedure, REVERT does not restore it to the value before the procedure call.

Example:

1. The user sets DSC to one before a procedure is called.

2. Within the procedure, the user sets DSC to zero.

3. When CCL processes a REVERT, DSC is again one.

When the global error flag (EFG) is zero, it is set to the value of EF during a REVERT. REVERT restores EF to
its value at the time of the procedure call (zero). This means the value ofEF in the procedure may be passed back
to EFG in the control statement sequence that call the procedure. The value of EF is not transferred to EFG '
unless the values of EF and EFG are zero before the procedure is called.

60493800 C 5·29 •

The following example shows input from the job fIle and a procedure and the resulting dayftle output.

Job ftle

Input

SET,EF=O.
SET,EFG=O.
BEGIN,TEST.
DISPLA Y,EF.
DISPLAY,EFG.

I
. PROC,TEST.
SET,EF=l.

Procedure DISPLAY ,EF.
DISPLA Y,EFG.

PROCEDURE COMMANDS

Dayfile

SET,EF=O.
SET,EFG=O.
BEGIN ,TEST.
SET~EF=l.

DISPLA Y,EF.
1 IB

DISPLAY,EFG.
o OB

REVERT.CCL
DISPLAY,EF.

o OB
DISPLAY,EFG.

I IB

Comments

EF and EFG are set to O.

EF is changed to 1.

This portion of the dayfile is from the procedure TEST.

The value of EF is restored to O.

The former value of EF is passed back to the job in EFG.

Procedure commands are similar to directives andmay be included in the body of a procedure to control the processing
of data within the procedure. As CCL processes each statement of a procedure body, it makes any necessary sub­
stitutions and determines if the resultant statement is a procedure command. The commands have a fixed format
with a period in column I and the command name beginning in column 2; the commands do not have a terminator.
All command requirements must be met exactly; if not met, a statement is assumed not to be a command .

• DATA

A. DATA command separates control statements of the procedure from subsequent data statements. It allows the
same parameter substitution occurring in the control statements to occur within the data statements and . DATA
command. All statements folloWing the. DATA command are written to a file when the procedure is called.
Comments cannot follow the command name or the parameter (if specified); the remainder of the command must
be blank.

The format of the . DATA command is:

.DATA)fn

The parameter is optional.

lfn Writes data to fIle lfn; if not specifIed, CCL writes data to a default fIle name.

• 5 .. 30 60493800 C

The . DATA command causes CCL to generate a temporalY file and supply a default name unless a file name is
specified by the user. Statements within the procedure may reference the default me via the special default
=DATA in the procedure header statement. If the me already exists, CCL returns it and creates a new me.
Hence, the .DATA command cannot be used to add data to an existing me. After the data is written, the me
is rewound. If the user specifies a me name on the .DATA command, the :DATA default will not reference
that me name. A user-specified file name must either be declared on the header statement for substitution or
used directly in the procedure body.

Data associated with a procedure may also be contained in the records following it. The user may reference this
data with the :FILE default in the procedure header statement. The procedure file is always positioned at the
beginning of the record following the called procedure. When procedure data is not contained in the procedure,
substitution of parameters does not occur within the data.

Examples:

In the following examples, both procedures and their data are on file SLEEP.

1.

Procedure

.PROC,SNORE,Pl = =DATA,X=Y.
"FTN,I=Pl.
COMMENT.lF X IS TRUE,IT IS
JUNE.

. DATA
PROGRAM X(INPUT ,OUTPUT)

After Substitution

BEGIN ,SNORE ,SLEEP.
FTN,I=ZZCCLAA.
COMMENT. IF Y IS TRUE, IT IS
JUNE .

.DATA
PROGRAM Y(INPUT,OUTPUT)

All input after the .DATA command has been written onto the default temporary me, ZZZCCLAA. The = DATA default tells the FTN compiler to search for input from ZZCCLAA. Substitution occurs in the
FORTRAN program, as well as in procedure SNORE.

2. .PROC,ZZZ,P2=:FILE,X=Y. BEGIN ,ZZZ,SLEEP.
FTN,I=SLEEP. FTN,I=P2.

COMMENT.lF X IS TRUE, IT IS

JUNE.

7/8/9
PROGRAM X(INPUT ,OUTPUT)

COMMENT.lF Y IS TRUE, IT IS
JUNE.

7/8/9
PROGRAM X(INPUT,OUTPUT)

The =FILE default tells the FTN compiler to search for input from file SLEEP. Since CCL left file SLEEP
positioned after ZZZ, the compiler starts reading immediately after procedure ZZZ. Substitution occurs
in ZZZ but not in the FORTRAN program.

60493800 C 5·31 •

·EOR

The. EOR command causes an end-of-record to be recorded on the data fIle specified by a. DATA command.
Mter a. EOR command, statements are written onto a new record. eCL recognizes. EOR only after it encounters
a. DATA command. Comments cannot follow the command name; the remainder of the command must be blank.

The format of the. EOR COMMAND is:

.EOR

.EOF

The. EOF command causes an end-of-partition to be recorded onto the data fIle specified by a. DATA command.
After a . EOF command, statements are written onto a new partition. EOF is used instead ofEOP for compati­
bility with other systems. CeL recognizes. EOR only after it encounters a . DATA command. Comments cannot
follow the command name; the remainder of the command must be blank.

The format of the .EOF command is:

.EOF

.*

A . * command provides comments within a procedure. These comments do not appear in the dayfIle. If the user
wants comments to appear on the dayflle, the comment statement should be used. The remainder of this command
(after the . *) can contain any combination of characters. When CCL calls a procedure, it discards all. * commands
before it begins processing.

The format of the . * command is:

.* comment

• 5-32 60493800 C

SAMPLE JOBS

The following jobs demonstrate the use of a procedure and some of the other capabilities of CCL. Control statements
generated by the processing of a procedure are indicated by a bracket.

1. Thisjob demonstrates the use of the . DATA command. The user calls a procedure FTNPROC containing
a FORTRAN program in the procedure body. The statements preceding the . DATA command compile
and execute the program.

Job

BEGIN,FTNPROC,INPUT.
7/S/9
. PROC,FTNPROC,K=3>ATA.
FTN,I=K.
LGO.
.DATA

6/7/8/9

PROGRAM FTNPROC(OUTPUT)
A=S.S
B=4.4
C=A/B
PRINT *,C
STOP
END

Dayfile

BBGIN,FTNPROC,INPUT.
"FTN,I=ZZCCIAA •
OOMPILIK; FTNPROC
LCD.

S'lOP
.004 CP SECDNIl:) EXECUTION TIME

REVER!' • CCL

2. The user has a permanent file HERE containing a FORTRAN program he wishes to execute. The user
attaches the me and calls procedure THIS to execute the program.

60493800 C

Job

ATT ACH,HERE,ID=MINE.
BEGIN,THIS,INPUT.
7/8/9
.PROC,THIS,J=HERE.
FTN,I=J.
LGO.
6/7/8/9

Dayfile

ATTACH,HERE,IG=MINE.
PFN IS
HERE
PF CYCLE NO. = eel
BEGIN,THIS,INPUT.
Fl'N,I=HERE.
COMPILIK; HERE
LCD.

S'IDP
.e83 CP SECONDS EXECUTION TIME

"REVERT. CCL

5·33 •

3. In this example the user wishes to execute. a FORTRAN program on permanent file HERE; however,
the user suspec;s that file HERE has been purged. The IFE statement checks the attach with the ~ILE
function. If the attach is successful, procedure THIS executes the program. The ELSE statement skips

control statements up to the ENDIF statement.

If the attach is unseccessful, CCL skips to the ELSE statement. Another permanent fIle (THERE) containing
a FORTRAN program is attached. Procedure THIS is called to execute this program. The call statement
indicates THERE replaces formal keyword J in the procedure body.

Job

ATTACH,HERE,ID=MINE.
EXIT,U.
IFE,FILE(HERE,PF),GO.
BEGIN ,TID S,INPUT.
ELSE,GO.
ATTACH,THERE,ID=MINE.
BEGIN,THIS,INPUT,J=THERE.
ENDIF,GO.
7/8/9
.PROC,THIS,J=HERE.
FTN,I=J.
LGO.
6/7/8/9

Dayfile

ATTACH,HERE,ID=MINE.
PFN IS
HERE
FILE IDr CATAIffiUED, SN=PFg3ET
PF AOORT
EXIT,U.
IFE,FILE(HERE,PF) ,GO.
EISE,OO.
ATTACH,THERE,ID=MINE.
PFN- IS
THERE
PF CYCLE 00. = eel
BEGIN,THIS,INPUT,J=THERE.
FI'N,I=THERE.
COMPILI~ THERE
LOO.

STOP
.002 CP SEOONOO EXECUTION TIME

REVERT.CCL
ENDIF ,GO.

4. The user has two permanent files. File OTHER contains procedure THAT, which compiles and
attempts to execute a FORTRAN program. File WHERE contains two FORTRAN programs
the- user wishes to check for errors.

• 5·34

Once the two files are attached, the WHILE and ENDW statements bracket the control state­
ments that test the programs on file WHERE. After ensuring both error flags (EF and EFG)
have zero values, procedure THAT is called. THAT attempts to execute the program read from
file WHERE. If there are fatal FORTRAN errors, the job aborts when the program is loaded.
Processing resumes when the EXIT(S) statement is encountered. If there are no fatal FORTRAN
errors, the SKIP statement skips over the EXIT(S) statement to ENDIF ,JUMP. and processing
resumes. The DISPLAY statement indicates the value of EF.

Loading a FORTRAN program containing a fatal error changes EF to a, nonzero value. When
processing returns to the job control statement record, the value of EFG is set to the value
that EF last had in the procedure. If there were no fatal errors, the value of R2 is incremented
by one. R2 counts the number of executable FORTRAN programs. Each pass through the
bracketed statements increments _ the value of RI by one. Rl counts the number of passes
through the bracketed statements .

60493800 C

CCL processes the WlllLE statement a third time. CCL evaluates the WHILE expression as
false, and all statements are skipped until an ENDW statement with a matching label string
is found. At the end of the job, the value of R2 is displayed so the user can tell at a glance
the number of successfully executed FORTRAN programs.

Job

ATTACH,OTHER,ID=MINE.
ATTACH,WHERE,ID=MINE.
WlllLE,RI.LE.I,CIRCLE.
SET,EF=O.
SET,EFG=O.
BEGIN,THAT,OTHER,WHERE.
DISPLA Y,EFG.
IFE,EFG=O,HOP.
SET ,R2=R2+ 1.
ENDIF,HOP.
SET,RI=RI + 1.
DISPLAY,RI.
ENDW,CIRCLE.
DISPLA Y,R2.
6/7/8/9

DayfIle

ATrACH,Ol'HER,ID=MINE.
PFN IS
OI'HER
PF CYCLE NO. = 001
ATrACH,WHERE,ID=MINE.
PFN IS
WHERE
PF CYCLE NO. = 001
WHILE,Rl.LE. 1 ,CIRCLE.
SET,EF=0.
SET,EFG=0.
BEGIN, THAT ,amER, WHERE.
FrN,I=WHERE.
COMPILING ONE
[ill.

FATAL WADER ERROR - SEE MAP

Procedure (Contents of File OTHER)

. PROC,THAT,KEY.
FTN,I=KEY.
LGO.
SKIP,JUMP.
EXIT,S.
ENDIF ,JUMP.
REWIND,LGO.
DISPLA Y,EF.
6/7/8/9

60493800 C

EXIT,S.
ENDIF ,JUMP •
REWIND, LOO •
DISPIAY,EF.

4 4B
REVERT.CCL
DISPIAY,EFG.

4 4B
IFE,EFG=0,HOP.
ENDIF,HOP.
SET,Rl=Rl+l.
DISPIAY,Rl.

1 IB
ENrM,CIRCLE.
WHILE,Rl. LE. 1 ,CIRCLE.
SET,EF=0.
SET,EFG=0.
BEGIN,THAT,amER,WHERE.
FI'N,I=WHERE.
COMPILING 'IWO
IID.

S'lOP
.003 CP SECONDS EXECUTION TIME

SKIP,JUMP.
ENDIF ,JUMP.
REWIND,LOO.
DISPIAY,EF.

o 0B
REVER!' . CCL

5-35 •

• 5-36

Dayfile

DISPIAY,EFG.
o 0B

IFE,EFG=0,HOP.
SET,R2=R2+1.
ENDIF,HOP.
SET,Rl=Rl+1.
DISPIAY,Rl.

2 2B
ENDV,CIRCLE.
WHlLE,Rl.LE.l,CIRCLE.
ENIl'l,CIRCLE.
DISPIAY,R2.

1 IB

60493800 C

COMMUNICATION AREAS 6

FILE ENVIRONMENT TABLE

The file environment table (FET) is a communication area supplied by the user within his field length. Any
file to be written, read, or otherwise manipulated or positioned, must have its own FET. The FET is interro­
gated and updated by the system and user file processing.

COMPASS programmers can create an FEr in two ways:

Use the FEr creating macros FILEB, FILEC, RFILEB, or RFILEC.

Use other COMPASS instructions to build a table in the format expected by the system.

Compiler language programmers need not be concerned with FET construction or manipulation, because the
compilers will perform these tasks in response to compiler language instructions. When CYBER Record
Manager is used for input/output, the user need supply only the file information table (FIT) data. CYBER
Record Manager will construct and manipulate the FET from information in its FIT. The FIT is fully
described.in the CYBER Record Manager reference manual.

A minimum size FET is five words, which allows for processing of sequential unlabeled files. Random or
labeled files, or files in which the user will process file conditions or errors with OWNCODE routines, require
a longer table. Extensions to the FET - areas identified by pointers within the FEr - are required for
extended error and label processing. Some compilers append an area past word 13 of the FET, as explained
in the respective manuals. When Sand L tapes are processed, the FET must be at least seven words in length.

The format of the FET is shown in figure 6-1. Some fields are pertinent only to CYBER Record Manager
manipulation; a description exists in the reference manual for CYBER Record Manager. Other fields contain
different data depending on the file mode or residence.

FET CREATION MACROS

System macros in the COMPASS language facilitate generation of the FET.

All parameters except lfn, fwa, and f are optional. The fwa and f parameters must be in the order shown;
others can be in any order. The macro parameters WSA, OWN, XPR, and IND are not order dependent, but
order is fixed within these parameters.

The user must specifically allocate the circular buffer location in the field length as well as the buffers for the
WSA, XPR, and XLR parameters. The macro identifies but does not create the buffers.

Four macros are available, depending on whether the file is coded or binary, random or sequential.

60493800 C 6-1

59 53 47 41 35 32 29 23 17 13 8 o Address r· 1fn+ n

o LOGICAL FI LE NAME LEVEL ERROR CODE/STATUS
NO. CODE

I UE EM IXx EN I DISPOSITION FET
DEVICE TYPE P P BIJ L P CS I CODE LENGTH FIRST POINTER

M' -5

0 IN POINTER 2

0 OUT POINTER 3

FNT POINTER RECORD BLOCK SIZE PRU SIZE LIMIT POINTER 4

CRM PSEUDO IN POINTER

FWA LWA+l
5

WORKING STORAGE AREA WORKING STORAGE AREA

DETAIL POINTER TO UBC MLRS (S/L TAPES ONL YI
ERROR CODE FET EXTENSION

(XP=l) (XP=1) RECORD REQUEST/RETURN INFORMATION
(RANDOM RMS ONLY)

6

-.

CRM FET EXTENSION (XP=1)

I RECORD NUMBER (CPC) ~TANDARD IN~_EX LEN~T1FWA OF STA~DARD INDEX

7

10
CPC EOI ADDRESS CPC ERROR EXIT ADDRESS

XL=l LABEL ERROR CODE LENGTH OF LABEL BUFFER FWA OF LABEL BUFFER
11

Xl=O FI RST 10 CHARACTERS OF FI LE LABEL NAME

XL=1 (RESERVED)
12

XL=O LAST 7 CHARACTERS OF FILE LABEL NAME POSITION NUMBER

Xl=l (RESERVED)
13

Xl=O EDITION NUMBER RETENTION CYCLE CREATION DATE

Xl=1 (RESERVED)
14

Xl=O MUL TI-FI LE SET NAME REEL NUMBER

..............- - - - -~---------.. --
PERM LENGTH OF EXTENSION T
BITS .{L)

~~~-------t 

RESIDUAL SKIP COUNT 

L 

~ _________ l 
Figure 6-1. File Environment Table 

6-2 60493800 D 



CODED SEQUENTIAL FILE 

lfD FILEC fwa,f,(WSA=addrw,lw),(OWN=eoi,err),LBL,UPR,EPR,XPR=xpadr, 
UBC=ubc,MLR=mlrs, (XLR=xladr,xll) 

BINARY SEQUENTIAL FILE 

lfD FILEB fwa,f,(WSA=addrw,lw),(OWN=eoi,err),LBL,UPR,EPR,XPR=xpadr, 
UBC=ubc,MLR=mlrs,(XLR=xladr,xll) 

CODED RANDOM FILE 

IfD RFILEC fwa,f,(WSA=addrw,lw),(IND=addri,li),(OWN=eoi,err),LBL, 
UPR,EPR,XPR=xpadr 

BINARY RANDOM FILE 

lfD RFILEB fwa,f,(WSA=addrw,lw),(IND=addri,li),(OWN=eoi,err),LBL, 
UPR,EPR,XPR=xpadr 

Further explanation of parameter usage appears with descriptions of the FET fields below. 

lfn 

fwa 

f 

WSA 

addrw 

lw 

IND 

addri 

Ii 

OWN 

eoi 

error 

60493800 C 

Logical file name 

Circular buffer address; substituted in FIRST, IN, and OUT 

Length of circular buffer; fwa + f is substituted in LIMIT to make buffer address 
-- lwa + I; f should be at least one word larger than PRU size of the device on which the 

file resides 

Working storage area keyword; parameters required for READIN and WRITOUT; 
relieves user of responsibility for buffer manipulation 

First word address of working storage area 

Length of working storage; when coded files are being processed, the length must be at 
least as long as the longest record, or data will be lost 

Index buffer parameter keyword; required for name/number index random files only 

First word address of index buffer 

Length of index buffer; for numbered indexed files, length should allow one word for 
each record plus a one word header; for named indexed files, two words are required 
for each record in addition to the. index header 

OWNCODE routine parameters keyword 

Address of routine to be executed if end-of-volume, end-of-device, or end-of-information 
occurs; UPR must be used 

Address of routine to be executed if file action errors occur; EPR must be used 

6-3 I 



UPR 

LBL 

EPR 

UBC 

ubc 

MLR 

mlrs 

XPR 

xpadr 

XLR 

xladr 

xlI 

User specifies processing at end-of-volume, end,..of-pack for user device' sets, or 
end-of-information; sets bit 4S of word 2 

Label information will follow for magnetic tape file; LABEL macro providing label 
information must immediately follow the FET creating macro to which it pertains 

User specifies handling of file action error conditions; sets bit 44 of word 2; does not 
set extended error processing flag 

Unused bit count keyword; required only for Sand L tapes 

Specifies number of bits in last word of record that do not contain valid data 

Maximum record size keyword; required only for Sand L tapes 

Maximum number of 60-bit words in record 

Extended error information to be returned by system 

First word address of FET extension for extended error processing 

Extended label processing keyword 

First word address of extended label processing buffer 

Length of extended label buffer 

Example,s: 

To create a minimum FET for the standard INPUT file: 

LBUFFER EQU 65 
aUFFER,L:aUFF~R INPUT FILEC 

To create an FET for a binary random file: 

LBUFFER 
LINDEX 
FILEABC 

EQU 65 
~QU 25 
RFILEB BUFFER,LBUFFER,(IND=INDEX,LINPEX) 

To create an FET for a labeled tape fIle with user processing at end-of-volume condition. OWNCODE routine 
is supplied: 

LBUFA 
TAPEl 
TAPEl 

EQU 65 
FILEB BUFA,LBUFA,LBL,UPR,(OWN=PROCEOR) 
L~BEL SORTINPUTTAPE,32,90 

To create an FET for a list file. OWN CODE routines are supplied and the working storage area is used: 

I 64 

LBUFB 
PRINT 

EQU 65 
FILEC BUFB,LBUFB,(WSA=LINE,l4),(OWN=ENDING,ERRORS),UPR,EPR 

60493800 C 



FET FIELD DESCRIPTION 

Words of the FET are numbered 1-13 in decimal, corresponding to the addresses lfn through lfn + 12 
decimal. All parameter values are octal unless otherwise noted. Bits are numbered 0-59 right to left in 
decimal. 

LOGICAL FILE NAME (lfn) (bits IS-59 at lfn) 

The lfn field contains one to seven display-coded letters or digits starting with a letter, left justified; if less 
than seven are declared, unused characters are zero-ftlled. This field is used as common reference point by 
the central processor program and the peripheral processor input/output routines. 

The lfn parameter declared in an FET creation macro is also used as the location symbol associated with 
the first word of the FET. A reference to lfn in the file action requests is a reference to the base address of 
the FET. 

CODE AND STATUS (CS)(bits 0-17 at Ifn) 

The CS field is used for communication of requested functions and resulting status between the central 
processor program and the peripheral processor input/output routines. This field is set to the request code 
by CPC when a file action macro request is encountered. When the FET is generated, bits 2-17 should be 
zero. 

The code and status bits have the following significance: 

Bits 14-17 

Bits 9-13 

Bits o-s 

60493800 C 

Record level number. On skip and write record requests, this subfield is set by CPC as 
part of the function code. On read requests, it is set by CIO as part of the status when 
an end-of-record is read. Initially the level subfield is set to zero when the FET is 
generated. 

Status information upon request completion. Zero indicates normal completion. Non­
zero indicates an abnormal condition, not necessarily an error; an OWNCODE rou­
tine, if present, will be executed. Status codes are described with the EOI OWNCODE 
and Error Exit Address discussions·. Initially, this subfield is set to zero when the FET 
is generated. 

Used primarily to pass function codes to a peripheral processor. Function codes are 
even numbers (bit 0 has a zero value). They are listed as CIO codes below. 

When the request has been processed, bit 0 is set to one. When the FET is generated, bit 
o must be set to one to indicate the file is not busy. 

Bit 0 

Bit 1 

Bits 2-S 

Current status of request (0 
complete). 

file being processed, 1 request 

Specifies the mode of the file (0 = coded, I 
not altered by CPC when a request is issued. 

binary). Bit 1 is 

Pass function codes to a peripheral processor (file action requests). 

6-5 



I 

Bits 3 and 4 These bits will be set to binary 10 if end-of-record is read, or to 
binary 11 if end-of-partition is read. 

CIO function codes listed below can be set in bits 0-8 of the CS field by the user before calling CIO to 
carry out the function. They are set by CPC when file action macros are used. All values are octal. 

All codes indicated by - are illegal; all reserved codes are illegal. All codes are shown for coded mode 
operations; add 2 for binary mode. Example: 010 is coded READ, 012 is binary READ. Upon completion 
of operation, code/status in FET is changed to an odd number, usually by adding 1 to the code. In some 
cases, code is further modified to indicate manner in which operation concluded. Example: a READ function 
010, at completion, becomes 011 (buffer full), 021 (end of system-logical-record), or 031 (end-of-partition). 

General code meanings are: 

200 series for special reads or writes (reverse, skip, non-stop, rewrite, etc.) 

300 series for open and close 

400 series reserved for CDC 

500 series reserved for installations 

600 series for skip 

700 series reserved for CDC 

Code Function Code Function Code Function 

000 RPHRt 104 OPEN/WRITE/NR 224 REWRITER 

004 WPHRt 110 -POSMF 234 REWRITEF 

010 READ 114 EVICT 240 SKlPF 

014 WRITE 120 OPEN/NR 250 READNS 

020 READSKP 130 CLOSE/NR 260 READNttt 

024 WRITERtt 140 OPEN 264 WRITENttt 

034 WRITEF 144 OPEN/WRITE 300 OPEN/NR 

040 BKSP 150 CLOSE 330 CLOSER 

044 BKSPRU 160 OPEN 340 OPEN 

050 REWIND 170 CLOSE/UNLOAD 350 CLOSER 

060 UNLOAD 174 CLOSE/RETURN 370 CLOSER/UNLOAD 

100 OPEN/NR 214 REWRITE 374 CLOSER/RETURN 

640 SKIPB 

t Applies to SI tapes only. 

ttWhen a WRITER function is issued with. level 17 specified, the function is changed to a WRITEF. Thus, 
a function issued as a 24 will return as a 34. 

ttt Applies to Sand L tapes only. 

6-6 60493800 C 



DEVICE TYPE (dt)(bits 48-59 at lfn + 1) 

The device type value will be returned to the FET device type field when a file action request is issued if I 
FET length exceeds the minimum. The 6-bit device type will occupy bits 54-59; bits 48-53 will hold record-
ing technique identification for magnetic tapes, if applicable. The mnemonic is used in the REQUEST control 
statement. 

Mass storage devices have the following codes: 

Request Mnemonic Device Type 

01-05 
AM 06 

07-12 
AY 13 
AZ 14 
AH 15 

16-17 
AX 20 

21-25 
LM 26 

27 
30-37 

Magnetic tapes have the following codes: 

Request Mnemonic Device Type (Octal) 

Device 

Reserved for CDC 
841 Multiple Disk Drive 
Reserved for CDC 
844-21 Disk Drive 
844-41 Disk Drive 
819 Disk Drive 
Reserved for CDC 
ECS residen t files 
Reserved for CDC 
Link medium file 
Reserved for CDC 

Reserved for installations, mass storage only 

Recording Technique 
(Right 6 bits of FET dt Field in Binary) 

MT 40 7 -track magnetic tape xxxxOO HI density 556 bpi 
xxxxOI LO density 200 bpi 
xxxxiO HY density 800 bpi 
xxxx 11 Reserved for CDC 
xxOOxx Unlabeled 

NT 41 9-track magnetic tape 

60493800 D 

xxOlxx SI standard U and Z labels 
xx 10xx 3000 series label (Y) 
xxllxx Reserved for CDC 
OOxxxx SI data format 
01 xxxx Reserved for CDC 
10xxxx S data format 
Ilxxxx L data format 

xxxxOO Reserved for CDC 
xxxxOI GE density 6250 cpi 
xxxx 10 HD density 800 cpi 
xxxx 11 PE density 1600 cpi 
xxOOxx Unlabeled 
xxOIxx SI standard U label (ANSI) 
xxl0xx 3000 series label (Y) 
xx 11 xx Reserved for CDC 
OOxxxx SI data format 
OIxxxx Reserved for CDC 
IOxxxx S data format 
11 xxxx L data format 

6-7 



Request Mnemonic Device Type (Octal) 

42 member multi-file set 
7-track tape 

43 member multi-file set 
9-track tape 

62 7-track multi-file set tape 

63 9-track muiti-file set tape 

Unit record devices have the following codes: 

Request Mnemonic Device Type (Octal) 

TRtt 44 
TPtt 45 

46-47 
LPtt 50 

51 
LQtt 52 
LRtt 53 
LStt 54 
LTtt 55 

56-57 
'CRtt 60 
KB 61 

64ttt-65 
66-67 

cptt 70 
DS 71 

" Gctt 72 
HCtt 73 
FMtt 74 
PLtt 75 

76-77 

Recording Technique 
(Right 6 bits of FET dt Field in Binary) 

Same as in MT 

Same as in NT 

Same as in MT 

Same as in NT 

Device 

Paper tape reader 
Paper tape punch 
Reserved for installations 
Any available line printer 
Reserved for CDC 
512 line printer 
580-12 line printer 
580-16 line printer 
580-20 line printer 
Reserved for installations 
405 card reader 
Remote terminal keyboard 
Reserved for CDC 
Reserved for installations 
415 card punch 
6612 keyboard/display console 
252-2 graphic console 
253-2 hardcopy recorder 
254-2 microftlm recorder 
Plotter 
Reserved for installations 

teode is generated when a tape is declared to have MF characteristics; the multi-file set code 62 or 63 is used 
only in system tables; it is not returned to the user's FET. 

ttSupporting software must be supplied by the installation. 

tttDevice code 64 cannot be assigned. REQUEST processing uses code 64 to indicate a tape file in the process 
of being assigned. 

6-8 60493800 C 



RANDOM ACCESS(R)(bit 47 at lfn + 1) 

A one in the R field indicates a random access file. R may be set to 1 by using the RFILEB or RFILFC 
macro. When a file is opened or closed, the R setting determines action performed with regard to the index 
as shown below. 

The index is that used by name/number index random files, not CYBER Record Manager. 

OPEN FET R=O 

No index No index action 

Index No index action 

FET R=l 

FET R bit is set to zero. 

Index is read into index buffer; if index buffer 
is not specified, FET R bit is set to zero and 
a non-fatal diagnostic is sent to dayfile. The 
index buffer is zeroed out before the index is 
read. 

If a non-existent file is opened, the value of the R bit is not altered. The index buffer specified in the FET 
is zeroed out. 

CLOSE 

File currently 
has index 

File currently 
has no index 

FET R=O 

File is flagged as 
not having index 

No index action 

FET R=l 

If index buffer exists or previous operation was 
write, the index is written; and file is flagged 
as having index. If buffer is not specified, a 
nonfatal diagnostic occurs. 

If file is written while R=1 during this job, or if 
previous operation was write, the file is flagged 
as having an index and the index is written. If 
index buffer is not specified, a non-fatal diagnostic 
occurs. 

The above actions are taken only if the contents have been altered since the file was last opened. 

When any other file action request is issued, the r setting determines the access method to be used. If r = 0, 
the file is read or written beginning at the current location. If r = 1, the file is read or rewritten according 
to the logical disk address in FET word 7, or written at the end-of-information; and the logical disk address 
is returned to FET word 7. 

RELEASE (N) (bit 46 at lfn + 1) 

This bit is reserved for the operating system. 

60493800 C 6-9 



I 

USER PROCESSING (UP) (bit 45 at lfn + 1) 

The UP bit may be used to control tape end-of-volume and device set end-of-device processing. If the UP 
bit is zero, unit swapping is automatic without notification to the user; the function in process when end-of­
volume or end-of-device is detected is completed on the next unit. If the UP bit is set to one, the user is 
notified when an end-of-volume or end-of-device condition arises. End-of-volume for tape files is defined as 
a tape mark followed by an EOVI label for labeled tapes and SI format unlabeled tapes, or as the first tape 
mark after the EOT reflective spot for unlabeled Sand L tapes. End-of-device for RMS files is defined by 
an overflow RBT word pair. 

If the UP bit is set, end-of-volume and end-of-device status (02) is returned in bits 9-13 of the FET code and status 
field. Functions that do not transfer data from the circular buffer will have been completed; data transfer function 
may be re-issued as indicated by an examination of the buffer pointers. If CPC is in use, control is returned to the 
EOI OWNCODE routine if declared in bits 30-47 of lfn + 8. If a continuation volume or device is desired, a CLOSER 
function should be issued. If end of volume processing without a continuation volume is desired, a CLOSER/RETURN 
should be issued. 

ERROR PROCESSING (EP) (bit 44 at lfn + 1) 

The EP bit is set when the calling program is to be notified of error conditions arising from file actions. 
Error codes returned to the code and status field are listed under the error address field. Control is given 
to the user OWNCODE routine at error address when EP is set. If EP has not been set, the operator is 
informed of the error and must authorize job termination or continuance regardless of the error. The 
following errors cause control to be returned to the user when the EP bit is set: 

CIO code not legal on this device 

READ or SKIP forward function immediately follows WRITE function 

FET buffer pointers out of bounds 

READ attempted on a file without read permission 

WRITE attempted on permanent file not positioned at end of information 

. Open function on an existing random indexed me with too small index buffer 

REWRITE on permanent file without MODIFY permission 

WRITE on permanent file without EXTEND permission 

EVICT on permanent file 

Device is full and overflow is not allowed 

Parity error on an ECS resident file 

Index error on an ECS resident file 

Unrecovered RMS error 

6-10 60493800 D 



NO RECOVERY (EB) (bit 43 at lfn + 1) 

This bit can be set to control error recovery. If it is set, no attempt will be made to recover errors 
encountered while reading data on magnetic tape. 

MULTI-USER JOB (MUJ) (bit 42 at lfn + I) 

Set only when the file is being processed by a multi-user job. Currently, the EDITOR routine in INTERCOM 
is the only system-supplied multi-user job. When bit 42 is set, user id, user table address, and a special code 
(for routine 3TT) appear in Ifn + 5. 

EXTENDED LABEL PROCESSING (XL) (bit 41 at lfn + I) 

This bit affects processing of labels on magnetic tape. Format to be used in the label fields in lfn + 10 
through lfn + 12 depends on this setting. Standard label processing of required labels occurs when 
XL=O. If XL > 1, the user can process optional labels, as described under Tape Label Processing later in 
this section. 

EXTENDED ERROR PROCESSING (XP) (bit 40 at lfn + 1) 

The upper 12 bits of FET word 7 detail errors indicated by bits 9-13 of FET word 1 if the XP bit equals 1, 
as explained- under FET Extension Pointer field. An error message is displayed on the B display and is 
written to the dayfIle. If this bit is not set, the operator is informed of unrecovered errors and has the 
option of dropping or continuing the job .. 

The EP bit must be set before control can return to the user OWNCODE to process these errors. Also, the 
UP bit must be set to gain control at end-of-volume. 

When XP is set, the FET extension pointer in word 7 must be set. 

EC (bit 39 at lfn + 1) Reserved for operating system. 

NON-STANDARD LABEL (NS) (bit 38 at lfn + 1) 

Setting this bit to 1 indicates non-standard labels exist. All processing must be done by the user program. 
Non-standard labels are not supported on SI format tapes~ 

60493800 D ·6-11 

I 



DISPOSITIdN CODE (bits 35-24 at lfn + 1) 

The values shown below are returned to the FET disposition code field when a file action request is issued 
with the FET length greater than the minimum. A file with a special name automatically is assigned the 
corresponding disposition code value when the fde is created. 

Codes on LABEL or REQUEST control statements for tape files set these values in the FET: 

Code 

CK 
IU 
CI 
SV 
CS 

FETVaIue 
(Ocbll) 

xx01 
xx02 
xx03 
xx04 
xx05 

Disposition 

Checkpoint 
Inhibit automatic unload of tape 
Checkpoint and inhibit unload tape 
Inform operator to save tape 
Checkpoint and save tape 

For rotating mass storage files, bits 35-24 of lfn + 1 are divided into four fields. The user cannot alter ftle 
disposition by changing this field. Rather, the DISPOSE or ROUTE control statement or macro must be used. 

6-12 

3533 31 29 24 

I EC ~IIC I DC 

EC thits 35-33) External characteristics: 

FET 
Value Special 

Code (Binary) Description File Name 

Default/ default 000 Default print train/default punch OUTPUT/PUNCH 
character set 

- - /EC=SB 001 Reserved/punch standard binary - - /PUNCHB 
EC= A4/EC=80COL 010 ASCII 48-character print train/punch - - /P80C 

. free-form binary 
EC=B4/ -- 011 BCD 48-character print train/reserved - - / --
EC=B6/EC=026 100 BCD 64-character print train/punch 026 - - / --
EC=A6/EC=029 101 . ASCII 64-character print train/punch 029 - - / --
EC=A9/EC=ASCII 110 ASCII 96-character print train/punch ASCII - - / --
--/--"- 111 Reserved for installations 

TID (bit 32) Terminal identifier which applies only to local fIles, not queue files: 

Code 

TID=C 
TID=id 

FET 
Value 

(Binary) Description 

1 Ignore remote ID in file routine 
o Route ftle to remote user with terminal 

identification id 

60493800 C 



IC (bits 31-30) Internal: 

FET 
Value 

Code (Binary) 

IC=DIS 00 
IC=ASCII 01 
IC=BIN 10 

11 

DC (bits 29-24) Disposition code: 

FET 
Value 

Code (Octal) 

01 
02 
03 
04 
05 
06 

07 
PU 10 
FRt 20 -'~ 

FLt 22 
HRt 24 
HLt 30 
PR 40 
P2 42 
LR 43 
LS 44 
LT 45 

LENGTH OF FET (bits 18-23 atlfn + 1) 

Description 

File format is display code 
File format is ASCII 
File format is binary 
Reserved 

Description 

Reserved 
Reserved 
Reserved 
Job ready for scheduling 
Job has tape requirements 
Job hastape requirements with VSN 

information 
Reserved 
Punch 
Film print 
Film plot 
Hardcopy print 
Plot 
Print on any available printer 
Print on 512 line printer 
Print on 580-12 line printer 
Print on 580-16 line printer 
Print on 580-20 line printer 

Special 
File Name 

OUTPUT/PUNCH 
----/----
- - - -/PUNCHB,P80C 
----/----

Special 
FDe Name 

PUNCH,PUNCHB,P80C 
FILMPRt 
FILMPLt 
HARDPRt 
PLOTt 
OUTPUT 

The system FET length is determined as follows: FET first word address + 5 + 19th = last word address + 1. 
The minimum FET length is five words (lgth=O). If the minimum FET is used, only the logical me name, 
code and status field, FIRST, IN, OUT, and LIMIT are relevant; other fields are not checked by the operating 
system. An FET of six words (lgth+ 1) is used if a working _ storage area is needed for blocking/deblocking. 
An FET of eight words (lgth+ 3) is used if the r bit is set, indicating an indexed file. Length is' nine words 
(lgth=4), if OWNCODE routines are declared. 

tSupporting software must be supplied by the installation. 

60493800 C 6·13 I 



FNT POINTER (bits 48-59 at lfn + 4) 

The FNT pointer is set by the operating system, upon return from a file action request, to the location of the 
me entry in the file name table. The pointer is placed in the FET to minimize table search time and does 
not affect the program. In the case of a minimum FET, CPCIO updates the pointer; PPCIO does not. 

RECORD BLOCK SIZE (bits 34-47 at lfn + 4) 

If the file resides on an allocatable device, the size of the device record block is returned in this field when 
the Ole is opened. It is given as the number of physical record units in a record block. If the number of 
PRUs is not defined or is variable, the field is set· to zero. Record block size is not returned if a minimum 
FET is used. 

PHYSICAL RECORD UNIT SIZE (PRU) (bits 18-33 at Ifn + 4) 

The physical record unit size of the device to which the ftle is assigned is returned in this field when a file is 
opened. It is given as the number of central memory words. The PRU size is used by CPC to determine 
when to issue a physical read or write. PRU size will not be returned if a minimum FET is used. 

FIRST, IN, OUT, LIMIT (bits 0-17 at Ifn + 1 through Ifn + 4) 

The fields contain the beginning address (FIRST) and last word address + 1 (LIMIT) which define the file 
circular buffer. The IN and OUT pointers indicate the address of data placed into or removed from the 
buffer. System and programmer use of these fields is discussed under the heading Circular Buffer Use. 

WORKING STORAGE AREA (WSA) (lfn + 5) 

The two fields in this word of the FET specify the first word address (bits 30-47) and last word address + 1 
(bits 0-17) of a secondary buffer within the program field length. The area is needed to use the system 
macros READIN and WRITOUT, which blocks or deblocks records from the area into the circular buffer. 
READIN and WRITOUT relieve the user of responsibility for circular buffer pointer manipulation. 

DETAIL ERROR CODE (bits 48-59 at Ifn + 6) 

When the XP bit is set to 1, this field contains extended tape error processing codes which give additional 
detail of abnormal conditions resulting from the last input/output operation. The user is responsible for 
clearing this field after reading it. 

Codes 1-77 (octal) are considered software warnings to the user; they are not results of hardware failures. 
The tape related codes and subsequent software warnings are as follows: 

I 6-14 

Error Codes 
(Octal) 

24 
25 
27 

Software Warning 

Read error in opposite mode 
Function not complete 
Record fragment possible 

60493800 C 



Error Codes 
(Octal) 

30 
31 
32 
33 
35 
36 
37 

Software Warning 

Data read exceeds MLRS/PRU size 
Multi-me set ill-formed 
Write attempt on protected volume 
Write at 200 bpi not allowed on 66X tape drive 
Multi-me name not found on multi-file device 
Next volume unknown 
File not allowed on assigned device 

Codes 1 00-177 (octal) are considered cases where the tape unit has lost position. These codes are as follows: 

Error Codes 
(Octal) 

100 
101 
102 
103 

Position 

Position uncertain - data intact 
Position uncertain - data destroyed 
Physical/logical positions disagree 
Position uncertain - ready dropped during last operation 

Codes 200-277 (octal) are considered unit oriented errors. Switching physical tape devices allows the program 
to continue after repositioning. These codes and subsequent errors are as follows: 

Error Codes 
(Octal) 

200 
201 
202 
203 
204 
205 
206 
207 
210 
211 
212 
213 
214 
215 

Unit 

System error - tape table 
Hardware - unit hung busy 
Hardware - no end of operation 
Hardware density change during I/O 
Unit reserved by another buffer controller 
Loop fault 
Unable to read tape just written 
Marginal transport indication 
Lost data 
Multiple load points on tape 
No read after write 
Coldstart 
Irrecoverable write reposition error 
Attempt to use downed unit 

Codes 400-477 (octal) are errors resulting from hardware failure between the PPU and the physical tape unit. 
These codes and subsequent errors are as follows: 

Error Code 
(Octal) 

400 
401 
402 
403 
404 

60493800 C 

Data Path Error 

Hardware - 6681 or 6683 malfunction 
Hardware - MMTC memory parity error' 
Hardware - 6681 failed, no data on IAN 
Hardware - transmission parity error 
System error 

6-15 

I 



Codes 1000-1005 (octal) are errors resulting from a bad tape. These codes and subsequent errors are as follows: 

Error Codes 
(Octal) Tape (Medium) 

Tape parity error 
25 feet erased tape 
Blank tape read 

1000 
1001 
1002 
1003 
1004 
1005 

Incomplete erasure of tape bad spot 
Noise in IRG 
Erase limit reached 

Codes 6000-7777 (octal) are reserved for installations. 

Codes are combined meanings of the following bits: 

11 10 9 8 7 654 3 2 

ResJrved TM CE UE PL DE DE DE DE 
I 

TM Tape medium 

CE Controller error (controller, 6681, etc.) 

UE Unit caused error 

PL Position lost 

DE Detailed error 

DE 

o 

DE 

The references to system noise record and last good record refer to procedures the system follows in recovery 
attempts. 

Detailed error codes allow a central processor program to take appropriate action when a non-user caused error 
occurs. For example, the message UBC IN FET TOO LARGE does not have a detailed error code because it 
is a user caused error. On the other hand, the message TAPE PARITY ERROR is assigned to a detailed error 
code because the condition is an external caused error. 

FET EXTENSION POINTER (bits 30-47 at lfn + 6) 

When the XP bit is set, pointer is the required address of an FET extension. Currently, the extension is 
limited to a single word, but the length (L) parameter anticipates future expansion. 

UNUSED BIT COUNT (UBC) (bits 24-29 of lfn + 6) 

The unused bit count field is used only for files in S or L tape format. (If the device type is not magnetic 
tape, this word will contain indexing information). It is used for communication between the peripheral 
processor input/output routines and the user program. 

I 6-16 60493800 C 



For magnetic tapes with S or L data format, the structure of the word at lfn + 6 is: 

59 29 23 17 0 

I~ ____________ ~_UB_C~I __ ~ __ M_LR_S __ ~I 
For a READ or READSKP function, the operating system will store into this field the number of low-order 
unused bits in the last data word of the record. The UBC field is not used during a READN request. For a 
WRITE, WRITER or WRITEF function, the operating system will read the contents of UBC and adjust the 
length of the record accordingly. The operating system does not use the UBC field during a WRITEN request. 

For example, to write a single record of 164 decimal characters, the data length is 17, to the next highest 
CM word. The number of low-order unused bits in the last word would be 36. The user would set 
UBC = 36, set IN and OUT pointers to reflect 17 words of data, and then issue a WRITE or a WRITER. 

For 7-track tape, the UBC may range from 0 to 59, but will always be a mUltiple of 12 when set as a result 
of a read operation. If it is not a multiple of 12 for a write request, the operating system will truncate the 
value to the nearest multiple of 12; if UBC is 18, the operating system will execute as though it were 12, and 
if U:BC is 6, the operating system will execute as though it were O. The field in the FET remains unchanged. 

For 9-track conversion mode tape, each 6-bit character in memory is converted to an 8-bit character on tape. 
The UBC is set to allow an integral number of characters to be written or read. The UBC is set to a multiple 
of 6 bits as a result of a read operation. For a write request, the operating system will truncate the value to 
'the nearest multiple of 6. If the UBC is 19, the operating system will execute as if it were 18. The field in 
the FET remains unchanged. 

For 9-track packed mode tape, four 6-bit characters in central memory are written as three 8-bit characters on 
tape; two central memory words are 15 tape characters. On a read, the UBC is set after an integral number of 
characters have been read from tape. If 3839 tape characters are read, 512 words are put in the buffer and 
the UBC is set to 8. If 511 words are written to tape, the operating system executes as if the buffer contains 
512 words and the UBC is 56. The fields in the FET remain unchanged. 

MAXIMUM LOGICAL RECORD SIZE (MLRS) (bits 0-23 of Ifn + 6) 

The MLRS field is applicable only for S or L format magnetic tape files. It defines the size of the largest 
physical record to be encountered when the S or L tape format is used. The size is given in number of 
central memoty words. 

For S tape format, if MLRS = 0, the value of the maximum PRU is assumed to be 512 words. For L tape 
format, if MLRS = 0, the assumed maximum PRU -is _LIMIT - FIRST - 1 for standard reads, and 
LIMIT - FIRST - 2 for READN. 

Since Sand L tapes record size is defined in characters, instead of central memory words, the last word may 
contain invalid data. Consequently, UBC is required to attest to the validity of all characters in this word. 

60493800 C 6-17 , 



RECORD REQUEST/RETURN INFORMATION (bits 0":'29 of lfn + 6) 

If the file resides on a mass storage device and has the r bit set in word 2, indexing information appears in words 
7 and 8 for communication between the peripheral processor input/output routines and the user program. 

The record request/return information field is set to zero when the FET is generated. Both the indexing 
functions and the peripheral processor input/output routines set the field during random file processing. 

For other than the operating system indexing method, the following information is pertinent. At the start of 
writing a new system-logical-record, if the random access bit and the record request/return information field 
are non-zero, the latter field is assumed to contain the address of a location within an index. The PP routine 
inserts into that location (in bits 0-23) the PRU ordinal (starting from 1) of the system-logical-record. To 
read the record again, the random access bit should be set to non-zero and the PRU ordinal should be entered 
in the FET in the record request/return information field. 

RECORD NUMBER (bits 36-59 at lfn + 7) 

When an indexed me is processed, this field contains the ordinal of a record identified in the index. Records 
are numbered beginning with 1. 

INDEX LENGTH (bits 18-35 at lfn + 7) 

When an indexed file is processed, this· field contains the number of words in the index. One word for each 
numbered record, or two words for each named record, plus a one-word header is required. 

INDEX ADDRESS (bits 0-17 at lfn + 7) 

This field contains the address of the index for a name or number index file. 

EOI OWNCODE ADDRESS (bits 30-47 of lfn + 8) 

This field contains the address of a user supplied OWNCODE routine to be entered when end-of-information, 
end-of-device, or end-of-volume status is encountered during magnetic tape or device set processing. The UP 
bit must be set if user end-of-volume or end-of-device processing is desired. If an OWNCODE address is specified, 
CPC enters this routine when end-of-information is encountered regardless of the setting of the UP bit. 

CPC enters this routine when bits 9-13 of the code and status field is: 

01 End-of-information encountered after forward operation 

02 End-of-volume reached during magnetic tape forward operation 

02 End-of-device reached during device set processing 

Just before entering an end-or-information OWNCODE routine. CPC zeros bits 9 and 10 of the first word 
of the FET. However, as the routine is entered, register Xl still contains the first word of the FET as it 
appeared before those two bits were zeroed. 

I 6-18 60493800 C 



ERROR EXIT ADDRESS (bits 0-17 of lfn + 8) 

This field specifies an address to receive ,control if an error condition occurs after a file action request. The 
EP bit must be set to cause control to pass to this OWN CODE address. The FET code and status field will 
reflect the error condition. If processing can continue. the error routine should exit through its entry point; 
otherwise, an abort request may be issued. If the error address field is zero, the run continues normally. The 
FET code and status bits reflect the error condition upon normal return to the program. 

CS Bits 9-13 
(Octal) 

04 

10 

20 

21 

22 

23 

24 

25 

26 

27 

30 

31 

32 

33 

34-37 

Meaning 

Irrecoverable parity error on last operation; or lost data on write. Unrecovered error other 
than device capacity exceeded on last magnetic tape operation. 

During a magnetic tape read, the physical record size exceeded circular buffer or maxi­
mum allowable PRU size (MLRS for Sand L tapes). Such magnetic tape error is termed 
device capacity exceeded. During a mass storage write, all mass storage space meeting the 
me requirements was in use or otherwise unavailable. 

Additional error status returned. 

End of multi-file set. File position number is greater than that of the last member in the 
set. Any subsequent attempt to reference the logical file name assigned to the nonexis­
tent member will result in a fatal error. 

Fatal error. 

Index full. 

Interlock broken for shared rotating mass storage devices. 

Attempt made to read or write record number n of a random file, but n exceeds index 
size. 

Attempt made to read named record from random file, but name does not appear in 
index. 

Attempt made to write named record on random file, but name does 'not appear in 
index, and index is full. 

Function legal but not defined on device. 

Permanent file permission not granted. 

Function legal except for permanent fIles 

No public set has the required attributes. 

Reserved for future use. 

If both EOI and error routine execution are needed,- the error routine is executed. Just before entering an 
error OWNCODE routine, CPC zeros bits 11-13 of the first word of the FET. However, as the routine is 
entered, register X 1 contains the first word of the FET as it appeared before those bits were zeroed. 

60493800 C 6-19 

I 



LABEL PARAMETERS (lfn + 9 through lfn + 12) 

Words 10-13 of the FET may contain information pertaining to magnetic tape labels. The format and use 
of these fields depends on the setting of the extended label processing bit in word 2. The LABEL macro 
generates fields for normal label processing. Further details appear under the Tape Label Processing 
heading. 

Parameters in these fields must be display code. If other than the LABEL macro is used to create them, display code 
zero may be used to add leading zeros to numeric fields. Character fields, which are left justified, may' be display 
code blank filled. 

RESIDUAL SKIP COUNT (RSC) (bits 24-41 at P + 0) 

When XP is set and P is the address of the FET extension word, RSC is the residual skip count. If SKIPF, 
SKIPB, or READSKP functions do not complete the specified number of skips, the count of records yet to 
be skipped is returned here. RSC will have a value when SKIPB encounters beginning-of-information even 
when the UP bit is not set. If SKIPF terminates at end-of-volume because UP is set, RSC will be set. 

PERM BITS (bits 20-23 of P + 0) 

The setting of these bits will duplicate that of the permanent file permission bits in the file name table. 
Permission is granted when the bit indicated is set. 

Bit 

20 
21 
22 
23 

Meaning 

Read permission 
Extend permission 
Modify permission 
Control permission 

These bits are set when the user issues an OPEN function. 

EXTENSION LENGTH (bits 0-17 at P + 0) 

The length of the extension, including word P, is required. This value must be 1. 

CIRCULAR BUFFER USE 

For each file, the user must provide one buffer, of any length greater than a PRU size. The buffer is called 
circular because' it is filled and emptied as if it were a cylindrical surface in which the highest addressed 
location is immediately followed by the lowest. The FET fields FIRST, IN, OUT and LIMIT control 
movement of data to and from the circular buffer. 

, 6-20 60493800 C 



Data is transmitted in physical record units; their size is determined by the hardware device. For example, 
rotating mass storage has an inherent PRU size of 64 CM words; binary mode magnetic tape files in SI format 
are assigned a PRU size of 512 words. 

FIRST and LIMIT never vary during an I/O operation; they permanently indicate buffer limits to the user and 
the operating system. 

The program that puts data into the buffer varies IN, and the program that takes it out varies OUT. During 
reading, the operating system varies IN as it fills the buffer; and the user varies OUT as he removes data from 
the buffer. During writing, the user varies IN as he fills the buffer with data; and the system varies OUT as 
it removes data from the buffer and writes it out. 

The user cannot vary IN or OUT automatically except when using READIN and WRITOUT functions. To 
change these pointers within the program a new value is inserted into lfn + 2 (IN) or lfn + 3 (OUT). 
For convenience, the words containing IN and OUT contain no other items, eliminating the need for a 
masking operation. The system dynamically checks the values of IN and OUT during data transfers, 
making continuous read or write possible. 

If IN = OUT, the buffer is empty; this is the initial condition. If IN>OUT, the area from OUT to IN 
I contains available data. If OUT>IN, the area from OUT to LIMIT - I contains the first part of the 

available data, and the area from FIRST to IN - 1 contains the balance. 

To begin buffering, a READ function may be issued. One or more PRUs of data are put into the buffer 
beginning at IN, resetting IN to one more than the address of the last word filled after each PRU ts read. 
Data may be processed from the buffer beginning with the word at OUT, and going as far as necessary, but 
not beyond IN - 1. The user must then set OUT to one more than the address of the last word taken from 
the buffer. He sets OUT = IN to indicate that the buffer is empty. 

When a READ macro request is issued, if the buffer is inactive and a read is not in process, CPC deter­
mines how much free space is in the buffer. If OUT>IN, OUT - IN words are free. If IN>OUT, 
(LIMIT - iN) + (OUT - FIRST) words are free. The system subtracts I from the number of free 
words, because it never must fill the last word since it would result in IN = OUT and give a false empty 
buffer condition. If the number of free words minus I is less than the PRU size, CPC does not issue a 
physical read request; control is returned normally. 

The example below illustrates the use of IN and OUT pointers. Speed of operation is not considered; 
simultaneous processing and physical 110 are not attempted. The initial buffer pointer position is: 

FIRST = BCBUF 
IN = BCBUF 
OUT = BCBUF 
LIMIT = BCBUF + 500 

The user issues a READ with recall request. Ignoring the possibilities of an end-of-partition, the system reads 
as many PRUs as possible (if PRU size is 64 words, 7 x 64 = 448 words) and leaves the pointers: 

FIRST = BCBUF 
IN = BCBUF + 448 
OUT = BCBUF 
LIMIT = BCBUF + 500 

60493800 C 6-21 



The user is processing items of 110 words. He takes four items from the buffer, leaving the 
pointers: 

FIRST == BCBUF 
IN == BCBUF + 448 
OUT == BCBUF + 440 
LIMIT == BCBUF + 500 

The user issues another READ request since the buffer does not contain a complete item. The 
system is aware that IN>OUT, so that vacant space is LIMIT - IN + OUT - FIRST == 492 
words; since it must not fill the last word, it must read fewer than 492 words. 

The ne~rest lower multiple of 64 is 7 x 64 == 448, so the system reads 52 words into IN through 
LIMIT - 1, and then 396 more words into FIRST through FIRST + 395. It then resets IN so 
that the pointers look like: 

FIRST == BCBUF 
IN == BCBUF + 396 
OUT == BCBUF + 440 
LIMIT == BCBUF + 500 

The system has just used the circular feature of the buffer; now the user must do so. The next time 
he wants an item, he takes the first 60 words from OUT through LIMIT - 1, and the remaining 
50 from FIRST}hrough FIRST + 49. Then he resets OUT, making the pointers: 

FIRST == BCBUF 
IN == BCBUF + 396 
OUT == BCBUF + 50 
LIMIT == BCBUF + 500 

On input, this can continue indefmitely, with OUT following IN, around the buffer. The system stops on 
encountering an end-of-record or end-of-partition, and sets the code and status bits accordingly. The system 
may, or may not, have read data before the end-of-record; so it is up to the user to examine the pointers 
and/or process the data before taking end-of-record or end-of-fIle action. 

In writing, the process is similar, but the roles are reversed. The user puts information into the buffer and 
resets IN; and when he calls the system, it removes information from the buffer and resets OUT. For 
writing, the system removes data in physical record units and empties the buffer if possible. The user must 
be careful not to overfill the buffer; IN must not become equal to OUT. During the process of emptying the 
buffer, the operating system resets OUT after each PRU has been written and checked for errors. 

ESTABLISHING OWNCODE ROUTINES 

The EOI address and error address fields in word 9 of the FET define user supplied routines. CPC calls 
these routines when the UP or EP bits are set. 

An OWNCODE routine. should be set up like a closed subroutine with execution beginning in the second 
word of the routine. CPC calls an OWNCODE routine by copying the exit word of CPC into the first word 
of the OWNCODE routine, putting the contents of the first word of the FET into register Xl, and 

I branching to the second word of the OWNCODE routine. If an unrecovered RMS error occurred, the FET 
pointers are left positioned after the last good write operation and the fIle positioned after the bad PRU. 

6-22 60493800 D 



Termination of an OWN CODE routine by a branch to its first word causes a branch to the point in the 
program to which CPC would have returned if the OWN CODE routine had not been called. 

Although CPC clears status bits in the first word of the FET before the OWN CODE routine is called, the 
contents of this word can be examined in register X I. All registers used in the main program except A I, 
XI, A6, and X6 are saved and restored by CPC. 

TAPE LABEL PROCESSING 

The label processing that occurs for magnetic tapes is indicated by the XL bit setting, bit 41 of the second 
word of the FET. Extended label processing is possible only when this bit is set. An explicit open is 
required. 

When the bit is off, the system generates output data and checks input data only for required ANSI, Z 
format, and Y (3000 series) format labels. Labels that are processed by standard processing (excluding Y 
labels) are label types VOL I, HDR I, EOF I, and EOV I. Default values are written if the user does not 
specify otherwise. 

Checking of the VOL I label of ANSI or Z formats ensures that the VSN requested for the job is the one 
assigned. 

STANDARD LABEL PROCESSING 

Only standard la~els are processed when the XL bit is off. Any existing optional labels will be ignored. 

If the FET for the file is at least 13 words- long, words 10-13 hold file header label data in the following 
format: 

59 47 29 23 17 o 

First 1.0 Characters of Label Name 10 

Last 7 Characters of Label Name Position Number 11 

Edition Number Retention Cycle Creation Date 12 

Multi-Fi.~e Set NarJ:le Volume Number 13 

When input tapes are read, any user information in these fields is compared with that written in the HDRI 
label on the tape before the file is opened. A discrepancy in a label field stops job processing until theoper­
ator takes action to continue it. If a field is not specjfied in the FET, any value on the tape HDRI label is 
accepted. This checking cannot be done with an FET less than 13 words, but any labeled tape will be accepted 
for processing. 

60493800 C 6-23 I 



I 

~ When output tapes are opened, any information in words 10-13 is used to create the HDRI label for the me. 
Otherwise, default values are written. If two OPEN functions with rewind are performed, the system retains 
the information written the first time. Thus, a label area supplies the label information regardless of which pro­
grams run afterwards. 

LABEL MACRO FOR FET FIELDS 

Fields in words 10-13 of the FET can be set for standard label processing by means of the LABEL macro. 
This macro must follow immediately the macro creating the FET to which it pertains. The LABEL macro 
generates data for VOLi and HDRllabels but does not directly cause any action on the fIle. 

Ifn LABEL 

Ifn 

labname 

ed 

ret 

create 

vol 

mfn 

pos 

labname, ed, ret, create, vol, mfn, pos 

Logical file name used in FET creating macro. 

Label name or file identification of 1-17 characters; default is 17 blank characters. 

Edition number specifying file version of 1-2 decimal digits; default is 0 I. 

Retention indicator indicating the 1-3 digit decimal number of days the file is to be 
protected against accidental destruction; default is installation parameter. 

Creation date in format of 2 digits for year and 3 digits for day(yyddd); default is 
current date. 

1-4 decimal digits indicating volume within a multi-volume set; default is 0001. 

Multi-file name of 1-6 characters indicating the set to which lfn belongs; default is binary zero. 

Position number of 1-3 decimal digits indicating position of file lfn in multi-file set 
mfn; default is 000. 

The macro expansion results in display code values with binary zero fill for all parameters given. If a parameter is 
absent from the macro, it is binary zero filled. Character fields are left justified; numeric fields are right justified. 

When a file header label is written subsequently using the FET fields, default values are assigned for any field 
containing binary zero. On the tape, character fields are display code blank filled and numeric fields are display code 
zero filled. The fields, as written on the tape, are returned to the FET. 

When the information in the FET is used to check existing labels, binary zero fill characters \Vill be converted to the 
display code blank appropriate for character fields or display code zero for numeric fields before comparison is 
made. Fields in the FET containing all binary zeros are not compared. Checking procedures compare fields in the 
FET with those on the tape; not all fields in the FET need be specified; neither must the FET contain a value for all 
fields written on the tape. 

If the header label on the tape mounted does not match the FET fields, the operator can attempt to locate 
the correct tape and assign it to the job, or accept the mounted tape with non-matching label fields. If the 
mounted tape is accepted, the values returned to the FET will reflect the header label on that tape. 

6-24 60493800 C 



EXTENDED LABEL PROCESSING 

When the XL bit is set, a user label buffer, rather than the FET, is used to hold labels for processing. The 
system processes the required labels, and the user may process optional labels in the buffer. 

Buffer location must be defined in word 10 of the file FET as follows: 

59 

Error Return Code 

35 

Length of 
Label Buffer 

Within the buffer, each label must be preceded by a status word. 

59 47 35 23 

17 

FWAof 
Label Buffer 

11 

Characters 
in Label 

o 

o 

Only bits 0-11 should be set by the user to show the number of characters in the label. Remaining fields are 
set and used by the label processor. The last label should be followed by the status word containing zeros in 
bits 0-11. 

Each label in the buffer appears, in display code, with the same format it has on the tape. Specific label field 
characteristics' are discussed with Tape laBels in section 3. 

When input tapes are read, the label processor searches the buffer for a HDRI label. Any label information in 
the buffer is compared with that on the tape; any differences will require operator action. The system validates 
only the HDRI label; other labels are the user's responsibility. If a HDRI label in the buffer contains binary 
zero in any field, no· label checking is done on that field. After an OPEN function is issued, all labels read by 
the system are delivered to the buffer, beginning with VOLle 

When output tapes are generated, any user labels to be written must be present in the label buffer when an 
OPEN or CLOSE function is issued. The buffer may. but need not, include the system required labels. The 
operating system will generate the required labels if they are not present in the label buffer. VOL I labels in 
the label buffer will be ignored; HDR I labels in the label buffer will be used if they are appropriate at that 
point in file processing. EOF I or EOV I labels in the label buffer will be used if they are present when the 
CLOSE function is issued. 

For multi-file set processing with the XL bit set and calls to the COMPASS macro POSMF, word 10 of the 
FET must point to a label buffer. One of the first entries in the buffer must be a formatted HDR I label with 
the multi-file name in the set identifier field. The position number field in the label has 4 digits; a position 
number of 9999 is required to write a label. Labels are always written at the end of all existing files in the 
multi-file set. 

60493800 C 6-25 I 





COMPASS IN-TERFACE WITH OPERATING SYSTEM 7 

USER/SYSTEM COMMUNICATION 

A user program can request action by another part of the operating system in several ways: 

A CYBER Record Manager-macro can be called to create or manjpulate a fIle. This results in a call to 
other operating system functions. 

A file action macro can be called. This results in a call to CPC (central program control) ~hich posts -a 
request in RA+l to communicate with Monitor. 

The system communication routine SYS= can be called through various macros. 

<;: 

Central processor subroutine CPC can be called through a return jump instruction. CPC then communi-
cat-es with Monitor. 

A request for PP program execution or system action can be placed in location RA+l of the user field 
length to comm~!licate directly with Monitor. 

These request.s are necessary" to perform all fIle action such as opening, closing, readiI\g, or writing a file, in 
addition to receiving information such as current time or date from the sys-t-em. 

BASIC COMMUNICATION: RA+l REQUESTS 

All requests from the user program to the system are made through RA+l of the user program, which is 
initialized to zero. The system Monitor frequently examines RA+I during program execution. If RA+l is not 
zero, Monitor assumes that the contents are a request for a PP program or a system action, and initiates request 
processing. Executing an XJ instruction immediately after setting RA+I non-zero speeds up processing. Bit 
59 of RA+66 is set if the XJ hardware is available. When Monitor processing is complete, RA+I is reset to 
zero:_ The requests to Monitor must be in the general format: 

Bit 42-59 

Bit 40 

Bit 36-39 

Bit 0-35 

3 display code characters of a PP program name. 

I if automatic recall is requested. With automatic recall, control is not returned to the 
calling program until the request is executed. If automatic recall is not requested, the user 
program must determine whether or not the request is complete by checking a status word. 

Zero. 

Parameters that are required by the particular function being requested. 

The user has the option of setting RA+I directly, or ca1ling a system or fIle action macro that sets it. If the user 
sets it directly, the format must conform to that shown above. 

When Monitor accepts the request, it fills location RA+l with zeros. For all requests except RCL, TIM, ABT, or 
END, the zero means only that Monitor has accepted the request. and has no relation to whether the requested 

60493800 C 7-1 I 



task is complete. A user program posts an RA:H request, then loops until that location is zero, before proceeding 
with other code. The user should make sure that R~+l is clear before issuing ~ request. 

Task completion normally is noted by the . change of bit 0 in a status word from 0 to 1. The address of the 
status word must be greater than RA+l and less than RA+FL. For requests made with automatic recall, the com­
plete stat~s bit is always set to 1 before control returns to the program, as explained below. Bits 0-17 of the 
RA+l request points to the status word. For file action requests, this status word is the first word of the FET 
for that file. 

RECALL CONCEPT 

A recall request issued in a program causes the central processor assigned to that job to be relinquished tem­
porarily. The leng.th of time that the job leaves the processor depends on whether periodic or automatic recall 
was requested. During the amount of elapsed time before the job is reassigned, the central processor is also 
dependent on the relative priority of the job in the system, but jobs in recall are among the first considered 
by the scheduling routines. 

Periodic recall puts a job in recall status for a shor-t period of time that depends on other Monitor activity. Mon­
itor reschedules the job when any PP program has completed processing for that job. 

Automatic recall (auto recall) causes the job to relinquish control of the centr~ processor for the time required to 
execute a request peripheral processor or Monitor function. The job remains in recall until after Monitor detects 

. -

a status bit change to a word. in the user field length which is set when the peripheral processor completes its task. 
For me action requests, the complete bit is bit 0 of the first word of the FET for the file. For other request, the 
address of the status word is specified by the user, and must be greater than RA+ 1 and less than RA+FL. 

With programs using recall whenever appropriate, central processor time for ajob is minimized and overall system 
central processor use is improved. If a program cannot proceed until a requested task is complete, it can allow­
Monitor to assign the central processor to another job until such time as the task is complete. Recall is particu~ 
lady useful when input/output tasks are considered. A programmer can request recall in four ways: 

RCL request to Monitor through program location RA+ 1 

PP program call in RA+l with recall bit set 

RECALL macro request 

File action macro with recall parameter. Any non-blank character establishes the recall parameter. R or 
RECALL can, but need not, be used. 

-, 

Central processor programs can post an RA+l request with the display code characters RCL in bits 42-59 and 
obtain periodic or auto recall depending on the remainder of the request. Periodic recall results from RCL in bits 
42-59 with bits 0-41 containing all zeros. Automatic recall is obtained with bit 40 set to 1 and bits 0-17 con­
taining an address of a word in the user field length which has 0 in bit O. A PP program is expected to set bit 0 
of the parameter word to 1 when its task is complete. If bit 0 is set to 1 when the RA+ 1 request is posted, Mon­
itor makes RCL a non-operation. For other (PP) RA+l calls with recall, PP Monitor checks the completion bit 
after the job is in auto-recall. 

The RECALL macro results in periodic recall when no parameter list is given with the macro. If a fIle name is 
specified, automatic recall is produced. No separate status word is involved with periodic recall. The user pro. 
gram must check the code and status field of the FET for complete status to determine whether program execu­
tion can continue. The RECALL macro will not exit to OWNCODE routines. 

I 7-2 60493800 C 



When me action macros are used, automatic recall is requested by a recaU' parameter. Any non-blank character or 
string of characters can appear as this parameter. The characters RECALL are often used, but a single arbitrary 
character is sufficient. 

The recall parameter can be specified for all the read and write macros except READIN an~ WRITOUT. However, 
the internal execution of these two macros ensures that automatic recall is always in effect. 

USING CPC 

Before CPC can honor a file actiop. request, the me environ~ent table (FET) must have been established for the 
file to be processed. Calling sequences to CPC can be generated either directly or through the use of system 
macro statements. 

The user communicates with CPC through macro requests and the FET. Communication with the operating sys-­
tern is handled by CPC through setting and checking RA + 1. ~PC may also cause the execution of ·one or more 
user OWNCODE subroutines for which addresses-are specified in word 9 of the FET. 

-A normal exit is made from CPC if the request is..honored and no error condition occurs. Register Xl 'contains 
zero upon' exit. If the status is other than request completed, register Xl contains the code and status bits set 
in th-e FET before the OWNCODE routine was entered. 

Automatic recall should be used when the program makes an I/O or system action request but cannot proceed 
until that request is satisfied. Control is not returned to the program until that request is satisfied. Periodic recall 
can be used when the program is waiting for any one of several requests to be satisfied. In this case, the program 
is activated periodically so that the user can determIne whether or not the program can 'proceed. 

CALLING SEQUENCE TO CPC 

Format of the calling sequence to the CPC subroutine: 

59 41 39 35 29 17 o 

x RJ CPC 

VVV nr w z 

RJ Return jump instruction 

CPC Entry point to the CPC subroutine 

r Set if auto recall requested 

If n=O indicating a file action request: 

Display code characters CIO, or yyy 

000001 Only file recall is desired. Display code characters RCL are generated in RA+1. OWNCODE 
routines are executed if appropriate. 

000002 

60493800 C 

For most read or write functions. A function in progress is not reissued by CPC. When the me 
becomes inactive. CPC issues the next request, Display code characters CIO are generated. 

7-3 I 



000003 For all other functions. When the file becomes inactive, CPC issues the request. Display~ 

code characters CIO are generated. 

000004 Equivalent to~ 000003; included only for compatibility with previous systems. 
or 000007 

x SAl base address of FET 

z Request code (one of the CIO codes listed in section 5). 

w Skip count for SKIPF, SKIPB, and BKSPRU; otherwise ignored. 

If n=l indicating other than a file action request: 

yyy Display-coded name of the called PP program 

x Not relevant 

z, w Parameters as required 

For me action requests, CPCplaces the CIO function request code in the code and status field of the FET before 
writing the request in RA+l. Bits not specified in the calling sequence are reserved for future system use. A me 
action request to Monitor is formatted by CPC in RA+l as follows: 

59 41 39 35 17 0 . 

-. 10...--1 _yy_y -.l.1°-,-,--lrl --'---"-I _w -..1.--1 _address_of FET ______ I 

A system action request to Monitor is formatted in RA+ l~as follows: 

59 41 39 35 17 o 

yyy 

1+1 1 
w z 

CPC EXECUTION 

Bit 41 of word 2 is set to 1 in the calling sequence of all requests except file action requests. This bit is 
actually a flag for CPC and has no relevance to either Monitor or the processing PP program. The setting of 
bit 41 causes CPC to recognize that the address given in Al is not relevant, and that the word following the 
return jump to CPC contains a properly formatted request. No additional processing is done on these requests, 
except for MESSAGE. The request is simply placed in RA+ 1. 

A request which utilizes an FET is signalled by a value of zero in bit 41 of word 2 of the calling sequence. 
CPC will in this case, do considerable processing for the user. The processing basically consists of three steps: 
wait until the FET is inactive; process any abnormal conditions; and initiate the new request. The high order 18 
bits of word 2 in the calling sequence may contain a numerical value rather than a PP program name. These 
values are of the form 2X + Y, where X represents the ordinal in a table of PP program names, and Y is 1 or 0 
to indic.ate whether or not the FET must be inactive before processing can continue. If a PP program name 
appears in these 18 bits, CPC waits for inactive FET status before initiating the new request. 

, 7-4 60493800 C 



1. Opon re_ceipt of a file- action request, CPC waits for previous activity on the specified FET to be com­
pleted unless the Y bit is zero; CPC requests automatic recall until FET word 1 contains an odd value. 
The Y bit is zero for READ, WRITE, and OPEN requests. If the request is OPEN, the assumption is 
made that no previous activity has occurred. READ and WRITE are handled specially. 

2. If the Y bit is one, the results of the previous operation are tested. A zero in bits 9-13 of the PET 
code and status field indicates there are no abnormal conditions and processing goes to step 3. However, 
if there ar.e abnormal conditions but no OWNCODE addresses are given, the contents of FET word 1 are 
saved for subsequent use as an exit parameter before processing goes to step 3. The error OWNCODE 
routine is entered if bits 9-13 have a value of 4 or higher (end-of-information or end-of-volume may also 
be present); the EOI OWNCODE is entered if the value is less than four. An OWNCODE routine is 
entered as though a return jump instru'ction was issued. Execution begins at the start address plus 1. 
An exit from the routine will, however, return control to the main program, not to CPC. The request 
which triggered this activity mayor may not have been issued; and the program must decide whether to 
re-issue it. An OWNCODE routine is entered with Xl containing word 1 of the FET complete with bits 
indicating abnormal conditions; FET word 1 itself has been cleared of the abnormal bits. 

3. If the new request. is for READ, WRITE or REWRITE, and the FET is already active with the same 
request, CPC exits, it would be pointless to stop the I/O merely to reactivate it. If, however, the FET 
is inactive or active with a different request, steps I and 2 above are executed as a subroutine. If the 
new request is a READ, an additional check is made for end-of-Iogical record or end-of-partition status 
on the preyious request; the new READ is ignored and an exit taken from CPC if either status is present. 
If a program is reading without recall, the user is forced to clear the logical record bit at the end of 
each record to ensure that he is aware of the end-of-Iogical record. 

CPC now makes preparations to communicate the new request to the system. The new request code from 
word 2 of .. the calling sequence is inserted into bits 0-17 of FET word 1; the old mode bit (bit 1) is not 
disturbed. The RA+I request is formatted from the following items: 

PP program name obtained from the CPC calling . sequence. 

Setting of the auto-recall bit in the calling sequence. 

First word address of the FET. 

RA+I is set and CPC waits for a zero quantity to re-appear .. If the auto-recall bit was set, CPC executes 
step 2 above as a subroutine. CPC then exits with Xl containing zero if no abnormal conditions were 
encountered; otherwise Xl contains the value from FET word 1. 

CPC saves and restores all registers except AI, A6, Xl and X6. 

60493800 C 7-5 



LO't:ATIONS RA THROUGH RA+l00 

The first 100 octal locations within a user field length are used for communication between the operating 
system and a user job. An additional word, RA+l00, is reserved for loading purposes. Many of the words 
are applicable only to internal operating system routines, and can be ignored by the progr~mmer. Several of 
the fields in this area are useful in COMPASS programming when macros are called. 

Figure 7-1 shows the communication area. Fields within it are: 

R Dependent job string recheck bit 

A . Job swapout to operator action queue (l = job will be placed under operation queue upon swapout 
regardless of job origin) 

o CFO flag (l = accept comment from operator) 

T Storage move flag (1 = move being attempted) 

P Pause flag; when set, program will halt until the operator takes action and clears the flag with GO 
command; if MESSAGE is called when P is set, the message will flash on the B display 

SS Sense switches 1-6 set by SWITCH cards or by operator command ONSWn 

M If set, system has CMU hardware available for use 

L Library/me flag (l = name is library name) 

X If set, system has the XJ instruction available for use 

JO JOB ORIGIN (O=system, 1 =central site batch, 2=remote batch, and 3=terminal) 

D RSS flag for DIS (see Operator's Guide) 

C LOAD complete flag set when load requested by LOADREQ is finished 

Locations RA+70 through RA+77 contain the control statement currently being processed. When a job step 
begins, the control statement verb is placed in bits 18-59 of RA+64, left-justified and binary-zero filled. 
The parameters are placed in bits 18-59 of RA+2 through RA+52, one parameter per word, left-justified 
and binary-zero filled. A parameter longer than seven characters is continued in the next word. A zero word 
marks the end of the parameter list. Bits 0-3 of each parameter word contain one of the following codes 
which indicates the separator or terminator that followed the parameter. 

00 Continuation 04 ( 10 

01 05 + 16 other 

02 = 06 17 . or ) 

03 I 

7-6 60493800 D 



The number of words containing parameters (0-51) is placed in bits 0-17 of RA+64. 

Example: 

This example shows a user field length containing a fictitious control statement verb and parameters 
created to illustrate all possible separator and terminator codes. The statement ABC(p1 =LGO/FILE34*B,P3 
+09.2$-$;2( ,P5%LAST) appears in RA+2 through RA+77 as follows. 

Display Code Control 
Location Contents (Octal) Equivalent Character 

RA+ 2 2034 0000 0000 0000 0002 Pl:::::::B 
RA+ 3 1407 1700000000000003 LGO::::::C / 
RA+ 4 0611 1405 3637 4700 0000 FILE34*::: continued 
RA+ 5 0200 0000 0000 0000 0001 B::::::::A 
RA+ 6 2036 0000 00000000 0005 P3:::::::E + 
RA+ 7 3344 5735 5300 5500 0006 09.2$: ::F 
RA+IO 5300 0000 0000 0000 00 I 0 $::::::::H 
RA+l1 35000000 0000 0000 0004 2::::::::D ( 
RA+12 0000 0000 0000 0000 0001 :::::::::A 
RA+13 2040 0000 0000 0000 00 16 P5:::::::N other 
RA+14 1401 2324 0000 0000 0017 LAST:::::O terminator 
RA+15 0000 0000 0000 0000 0000 .......... .......... 

RA+64 0102 0300 0000 0000 0013 ABC::::::K 

RA+70 5555 5501 0203 5120 5534 ABC(P 1 
RA+71 5554 1407 1755 5006 1114 =LGO /FIL 
RA+12 0536 3747 0256 2016 4533 E34*B,P3+0 
RA+73 4453 5735 5353 0055 5346 9$.2$$: $-
RA+74 5353 5353 7735 5155 5620 $$$$;2( ,P 
RA+75 4055 6355 1455 0155 2355 5%LAS 
RA+76 2455 5255 0000 0000 0000 T ) :::::: 
RA+77 0000 0000 0000 0000 0000 ........... .......... 

When a control statement is read in response to a CONTRLC macro with the crack parameter, the same 
interpr~tation takes place except the verb is taken as the first parameter and placed in RA+2. Bits 18-59 
of RA+64 are not altered but bits 0-17 show the parameter word count of the new statement. 

Location RA+l is set by the user,or macros called by the user, when a function is requested from the 
operating system. 

60493800 D 7-6.1 /7-6.2 • 





59 

RA+O 

RA+1 

RA+2 

RA+53 

35 29 23 

R 

User/System Interface 

Parameters 
(left justified)' 

17 11 5 o 

AOTP SS 

I (Reserved) ICode 

I I 
I . I . 
I I 
I · I · ~~ 
I . I . 
I I 
I I 

~ __________________________ ~ ________ ~L __ 

RA+54 

RA+63 

RA+64 

RA+65 M 

RA+66 X 

RA+67 

RA+70 

"" 
""." 

RA+76 

RA+100 

60493800 C 

1 AJ Bootstrap for Absolute Programs 

File/Library Name 

_ LWA+1 of Loadable 
Area in ECS 

FWA of Loadable 
Area in ECS JO 

C 

Control Card Image 

L 

D 

Number of 
Parameter Words, 
starting in RA+ 2 

LWA+1 of Loadable 
Area in CM 

FWA of Loadable 
Area in CM 

(Replaced by Operator Message If 0 Bit Set and CFO Type-In) 

Reserved for Load i ng Purposes 

Figure 7-1. Communication Area RA through RA+I00 

7-7 

I 

I 



CYBER RECORD MANAGER MACROS 

CYBER Record Manager consists of a group of routines providing input/output facilities common to several 
products. Us~r programs written in COBOL or FORTRAN can communicate with the Record Manager through 
compiler language calls; COMPASS programmers communicate through the macros listed below. 

CYBER Record Manager supports the following me organizations: 

Sequential mes in physical order 

Word Addressable files on mass storage with continuous non-blocked data 

Indexed sequential files in which records are physically and logically in order by symbolic keys. 

Direct Access mes containing records in fIXed length blocks; record location is determined by hashing a key 
to identify a block 

Actual Key files in which each record is stored in a location specified by the key associated with that 
record 

The operating system considers all the above types of organization as sequential files. None have name/number 
indexes similar to those discussed elsewhere in this manual. 

The record and block formats supported by CYBER Record Manager are listed below. 

I 7-8 

Record 
Type 

F 

D 

R 

T 

U 

W 

z 

S 

Description 

Fixed length records 

Record length is given as a character count, in decimal, by a length field contained within 
the record 

Record terminated by a record mark character specified by the user 

Record consists of a fixed length header followed by a variable number of fixed length 
trailers, header contains a trailer count field in decimal 

Record length is defined by the user for each read or write 

Record length is contained in a control word prefixed to the record by CYBER Record 
Manager 

Record is terminated by a 12-bit zero byte in the low order byte position of a 60-bit 
word. Binary zero fill can· precede the record terminator; thus, the record an end in 12 to 
66 bits of zero. 

Record consists of zero or more blocks of a fixed size followed by a terminating block of 
less than the fixed size. These S records are equivalent to the system-logical-records 
discussed elsewhere in this manual. 

60493800 C 



Block 
Type Description 

K All blocks contain a fixed number of records; the last block can be shorter 

C All blocks contain a fixed number of characters; last block can be shorter 

E All blocks contain an integral number of records; block sizes may vary up to a fixed 
maximum number of characters 

I A control word is prefixed to each block 

COMPASS macros used by CYBER Record Manager reside in the system text overlay IOTEXT; if system 
defaults are installed, macros also reside in overlay SYSTEXT. General macro names and functions are given 
below; specific variants of these macros are detailed in the Record Manager reference manual along with other 
product capabilities. 

Macro Function 

File Creation and Maintenance Macros 

FILE Creates fIle information table (FIT) 

FETCH Retrieves value of any field in FIT 

STORE Sets value in field of FIT 

File Initialization and Termination Macros 

OPENM Prepares a fIle for processing; initiates label processing 

CLOSEM Terminates me processing; initiate~ label processing 

Data Transfer Macros 

GET Transfers data from file to working storage area 

GETP Retrieves a portion of a record from a file 

PUT Transfers data from working storage area to a file 

PUTP Transfers a portion of a record to a file 

CHECK Determines completion status of I/O operations 

File Positioning Macros 

SKIP Repositions file backward or forward 

REWINDM Rewinds volume to beginning-of-information 

SEEK Provides overlap between I/O and processing by positioning while processing 

60493800 C 7-9 I 



File Updating Macros 

DELETE Deletes record from file 

REPLACE Replaces record in me 

Boundary Condition Macros 

WTMK Records a tape mark on a tape file 

WEOR Records end of a section 

, ENDFILE Records end of a partition 

A FILE control statement equivalent to the FILE macro also is available. 

Files created by CPC can be read or written by CYBER Record Manager once they are properly described to 
Record Manager. Similarly, a file created by Record Manager can be read by CPC if the file structure con­
forms to that required by READ and WRITE macros. A fIle should not be manipulated by both Record 
Manager and CPC within a given run. 

The reference manual for Record Manager contains details of its use. CYBER Record Manager macros are not 
further discussed in this manual. 

SYSTEM COMMUNICATION MACROS 

Communication between the operating system and a program written in COMPASS is provided by the following 
macros. These macros exist within all of the COMPASS system text overlays CPCTEXT, IOTEXT, SYSTEXT, 
SCPTEXT, and TXT6RM. 

SYSCOM MACRO 

This macro defines standard symbols and macros. 

SYSCOM Bl 

If Bl is present, the COMPASS pseudo instruction Bl =1 is generated. This informs COMPASS that register Bl 
contains 1 throughout the program~ and can affect the code produced by the R= pseudo instruction. The 
micro MODEL is defined as the two characters 74. The symbols listed below are made available for use by 
the user program. 

RA.SSW = 0 Sense switches in· bits 11-6. 
RA.MTR = 1 System monitor request register. 
RA.ARG = 2 Start of control statement argument list. 
RA.PGN = 64B Bits 59-18 = program name. 
RA.ACT = 64B Bits 17-00 = argument count. 
RA.LWP = 65B Last word pointers for overlay load. 
RA.CMU = 65B Compare move unit flag (bit 59) 

60493800 C 



RA.FWP = 
RA.CEJ = 
RA.LDR = 
RA.CCD = 
RA.ORG = 

SYSTEM MACRO 

66B 
66B 
67B 
70B 

100B 

First word pointers for overlay load. 
Bit 59 = central exchange jump enable flag. 
Loader communication word. 
First word of control card image. 
Origin of overlay header word for absolute programs. 

This macro is used for issuing system requests for which no specific system macro is provided. It is also used 
by many of the system action macros. Registers Xl, X6, AI, and A6 are destroyed during macro execution. 

SYSTEM name,recall,pl,p2 

The SYSTEM macro generates the following in X6 and issues a return jump to SYS=. 

59 41 39 35 17 0 

I 
Name IaI r l 01 p2 

name Display·coded name of PP program 

r Optional recall parameter 

pi First parameter to PP program 

p2 Second parameter to PP program 

The value of pI or p2 cannot exceed 377777 (octal). 

COMMON USES OF SYSTEM MACRO 

ABS is a system program used by a central processor program to dump absolute core. This request is done 
by issuing a call to PP routine ABS. The call to ABS can be issued with or without auto-recall ei,ther by 
using the SYSTEM macro or by placing the call in RA+I directly. If auto-recall is not used, the program 
uses: 

SYSTEM ABS"from,thru. 

If auto-recall is used, the programmer estabHshes a parameter word that contains the thru and from values. 
The format of the parameter word is: 

Bit 11-0 Zero-filled, bit zero used as complete bit 

Bit 29-12 Thru value 

Bit 47-30 From value 

60493800C 7-11 

I 



The central processor program then uses: 

SYSTEM ABS,R,pointer to parameter word. 

DMP is a system program used by a central processor program to dump specified portions of field length. 
This request is done by issuing a call to PP routine DMP. The call to DMP can be issued with or without 
auto-recall either by using the SYSTEM macro or by placing the call in RA+1 directly. If auto-recall is not 
used, the program uses: 

SYSTEM DMP"thru,from. 

If auto-recall is used, the programmer establishes a parameter word that contains the thru and from values. 
The format of the parameter word is: 

Bit 11-0 Zero filled, bit zero used as complete bit 

Bit 29-12 Thru value 

Bit 47-30 From value 

The central processor program then uses: 

SYSTEM DMP ,R,pointer to the parameter word 

Only the first 131K words of memory can be dumped with DMP. See the ABS control statement if 198K or 
262K memory is to be dumped. 

REGISTER SAVE/RESTORE FUNCTION 

To save or restore registers, a program can issue a call for an XJR function through RA+1. This special call is 
processed entirely by central monitor (CPMTR). 

To issue the XJR call the program can use the SYSTEM macro as follows: 

SYSTEM XJR,R;addr,1 

XJR Name of system process. 

R Recall parameter. This call must be made 'with recall. 

addr Address of a 16-word parameter area to contain the exchange package. The format of 
this area is described with the DMP control statement~ 

Save function requested; if omitted restore requested. 

For the I save function, CPMTR saves the job's current exchange package in the parameter area. Registers Xl, 
X2, X6, Al and A6 are destroyed by the SYSTEM macro and by the subroutine SYS=. 

I 7-12 60493800 C 



For the restore function, CPMTR sets up an exchange package containing XO-X7, BI-B7, AO-A7 and P from 
the parameter area. RA, FL, EM, RE, FE and MA registers come from the job's current exchange package. 
The result, then, replaces the job's current exchange package. Execution resumes at the address pointed to by 
P in the parameter area. This is the only safe way to set registers Al through A 7 to values outside the 
current field length. 

INTEGER DIVIDE Opdefs 

These opdefs provide for division of 48-bit integers. 

IXi Xj/Xk 
IXi Xj/Xk,Bn 

The integer quotient (fraction truncated) result in register Xi has sign extension in bits 59-48. The first form 
destroys register B7, and the second form destroys register Bn. The contents of Xj and Xk are the floating 
point normalized operands. 

SYSTEM ACTION MACROS 

The macros described in this section allow the user to receive status information from the operating system 
and to change some job parameters. Calling these macros from a COMPASS central processor program results 
in RA+I requests for Monitor functions or PP programs. 

The macros reside in the following COMPASS system text overlays: CPCTEXT, IOTEXT, SYSTEXT, and 
SCPTEXT. All of the system action request macros call the system communication subroutine SYS=, except 
as noted in the individual macro descriptions; these macros do not call CPC. The subroutine SYS= resides in 
the library NUCLEUS. 

Generally, the system action macros use registers alike; only registers Xl, X6, AI, and A6 are destroyed. All 
registers except Xl and X6 can be used as parameters. Register Xl can be used as the first, but not as the 
second, parameter. Register X6 cannot be used as a parameter. Exceptions are noted in the macro 
descriptions. 

ENDING PROGRAMS 

Programs can be ended by one of two macros: 

ABORT 

END RUN 

Abnormal termination 

Normal termination 

These functions result in a Monitor request for ABT and END, respectively; they are executed immediately by 
Monitor. 

ABORT MACRO 

The ABORT function causes abrupt termination of the present program, and, if an EXIT, EXIT(U) or 
EXIT(S) does not appear among the remaining control statements, causes job termination. 

60493800 C 7-13 I 



ABORT Ifn,p2,p3 

lfn 

p2 

p3 

Position allows for SCOPE 2 compatibility. Any non-blank value in this field causes an 
assembly error under NOS/BE. 

Optional parameter. Characters ND in this field suppress the DMPX user dump. Characters 
NO DUMP suppress the DMPX user dump and cause control statement processing to be 
resumed only after an EXIT(S) control statement has been encountered. EXIT, EXIT(C), 
and EXIT(U) control statements are skipped. Any other non-blank value in this field is 
ignored. 

Optional parameter. Character S in this field causes control statement processing to be 
resumed only after an EXIT(S) control statement is encountered. EXIT, EXIT(C), and 
EXIT(U) control statements are skipped. Any other non-blank value in this field is 
ignored. 

The DMPX user dump produced when p2 is blank (or any non-blank value except ND or NO DUMP) shows 
the contents of the exchange package, contents of the. operating registers, and memory locations near the 
location of the ABORT call. 

The effect of the various EXIT control statements on job processing and DMPX production after an ABORT 
call is shown in the following chart. Resume indicates that the statements following EXIT are executed; skip 
indicates that the following statements are not executed. 

ABORT Call DMPX EXIT. EXIT(C) EXIT(S) EXIT(U) 

ABORT Yes Resume End job Resume Resume 

ABORT ,ND No Resume End job Resume Resume 

ABORT ,ND,S No Skip Skip Resume Skip 

ABORT "S Yes Skip Skip Resume Skip 

ABORT ,NODUMP No Skip Skip Resume Skip 

ABORT ,NODUMP,S No Skip Skip Resume Skip 

ENDRUN MACRO 

The ENDRUN function is usuany the last instr~ction to be executed in a user program. No parameters can 
be used with this request. 

ENDRUN 

Monitor causes the operating system to examine the control statements and begin processing of the next 
control statement. If the next control statement contains a 7/8/9 multiple punch or is EXIT. or EXIT(S}r 
the job is terminated. 

I 7-14 60493800 C 



GETMC MACRO 

The GETMC macro obtains the characteristics of the mainframe on which the user's routine is executi~g. 

The format of the macro is: 

GErMC addr 

addr Address of a word where the following information is returned. 

Bits 59-49 Reserved for software characteristics 

Bit 48 System assembled for 63-character set 

Bits 47-36 ECS size/lOOOB 

Bits 35-24 _Number of PPUs 

Bits 23-20 Reserved for hardware characteristics 

Bits 19-18 CYBER 176 mainframe flag 

o Not a 176, 
1 Type A 
2 Type B 
3 Type C 

PPUs running at 2x speed (CYBER 170 series only) 

Bit 16 CYBER 17x mainframe 

Bit 15 CMU is present 

Bit 14 CEI/MEJ option is present 

Bit 13 CPU 0 has instruction stack 

Bit 12 CPU 1 is present 

Bits 11-1 Memory size/200B 

Bit 0 Completion bit 

60493800 C J,.15 • 



FIELD LENGTH REQUEST 

The amount of extended core storage or central memory assigned to a job can be changed by the MEMORY 
macro. The MEMORY macro can also be used to obtain the current ECS or central memory field length 
assigned to the job, obtain the maximum ECS or central memory field length available to the job, or release 
all ECS assigned to the job. 

Format of the MEMORY macro call: 

MEMORY type,address,recall,length,nabort 

type 

address 

recall 

length 

nabort 

eM, SCMt or blank, central memory request; ECS or LCM,t extended core storage 
memory request. 

Address of request/reply word; if omitted an assembly error results. 

Optional recall parameter. If recall is specified, control is not returned to the user's 
program until the request is honored. Any non-blank parameter is acceptable. Recall 
is required on all requests for memory increases. 

Optional parameter giving number of words of field length requested. 

Optional parameter which averts a job abort if non-blank prevents job termination when 
requested field length exceeds field length defined on the job statement, or when other 
problems involving field length discrepancies occur in loading the user's job. If a non­
blank nabort parameter is used, and an ABORT cannot be prevented, the current field 
length is returned in bits 30 through 59 of the status word. (Memory is allocated in 
portion of 100 (octal) for central memory and 1000 (octal) for ECS.) 

Format of MEMORY macro request/reply word is two 30-bit fields: 

Bits 0-29 should always contain zero when the request is issued. Bit 0 is set to I upon completion of the 
request. 

If the length parameter in the MEMORY macro call is blank, the upper 30 bits of the request/reply word 
determine the action taken. 

If bits 30-59 contain zero, the current field length of the type specified in the macro call is returned right 
justified in bits 30-59. 

If bits 30-59 contain negative zero (7777777777B) and the type parameter in the MEMORY macro call is ECS 
or LC\( all extended core storage assigned to the job is released. If a negative zero is given when the type 
parameter is not ECS or LCM, an error condition results. Also, the message MEM ARG ERROR is issued to 
the dayfIle and the job is aborted. 

If bits 30-59 contain negative one (7777777776B) the maximum type field length available to the job is 
returned right justified in bits 30-59 of the request/reply word. 

I tSCM and LCM are allowed for compatibility with SCOPE 2. 

7-16 60493800 C 



Any value, other than those described above, in bits 30-59 of the request/reply word is assumed to be the 
field length desired; and this value is requested. If the request is satisfied, the field length is returned right 
justified in bits 30-59 of the request/reply word; and bit 0 of the request/reply word is set to 1. The system 
rounds the user's field length to the nearest 100 (octal) central memory words or 1000 (octal) ECS words 
above the requested length. 

If the request cannot be satisfied and the nabort parameter in the MEMORY macro call was not blank, the 
current field length is returned in bits 30-59 of the request/reply word, and the job continues at that field 
length. If the nabort parameter was blank, the job is aborted. 

Because system routines may read ahead, field length should not be reduced to within four words of last used 
location. 

DAYFILE MESSAGES 

A message is always placed in the control point message area and optionally entered into the job or system 
dayfIle with the MESSAGE macro. The control point message area is displayed on the operator. console B 
display, and the dayfIles are displayed on the operator console A display. 

The message flashes for operator attention if its first character is $ or if the pause bit is set when 
. MESSAGE is called (bit 12 of word RA+O). The MESSAGE macro calls the system communication sub­

routine MSG=. 

MESSAGE addr ,display ,recall 

addr. First word address of the message. 

display Ordinal specifying message disposition. If omitted, default is O. 

o Enter in system and job dayfiles and control point message area. 

recall 

60493800 C 

2 

3 

4 

5 

6 

7 

8 or more 

LOCAL 

other 
non-blank 

In control point message area only. 

Same as option 1 (for compatability with other systems). 

Enter in job dayfile and control point message area. 

Enter in CERFILE (system programs only). 

DayfIle accounting message (system programs only). 

Same as option 0 but do not send to user's terminal. 

Same as option 3 but do not send to user's terminal. 

Same as option 1. 

Display on B display and record in job dayfile. 

Display on B display but do not record elsewhere. 

Optional recall parameter; if non-blank, MSG=constructs a status word. 

7-17 • 



Within the program the message must be stored· in display code and should not contain any characters with display 
code values greater than 57 since these cannot be displayed on the console. Any display code value greater than 57B 
or 0 is replaced with a blank (display code value of 55B). Maximum message length of 80 characters is established 
by.the dayfile processing routine: 40 characters appear on each line. Messages exceeding 80 characters are truncated. 
Those shorter than 80 characters must be terminated by a word with zeros in bits 0-11. The CERFILE option is an 
exception since the message length is always six CM words. It is assumed to contain binary data so no character checks 
are made. The data is entered in the CERFILE and nowhere else. 

RECALL MACRO 

RECALL causes the program to relinquish control of the central processor. The conditions that determine 
when the job regains control of the processor depends on the form of the macro used. 

Periodic recall results from: 

RECALL 

Control returns to the user program after a short period of time or when any PP program terminates processing 
f 

for the job. Once control is regained, the user must determine whether the condition that required recall is 
still present. This form of the RECALL macro calls the system communication subroutine RCL=. 

Automatic recall results from: 

RECALL addr 

addr Address of a word (usually the first word of a FET) which has bit 0 set to 1 before 
control returns to the user program. 

If CPCTEXT is used when addr is the first word of the FET and error or end-of-partition bits are set in the 
code and status field of the FET, control returns to a user OWNCODE routine if it exists. Such routines are 
established by setting the EP or UP bits and specifying OWNCODE addresses. If other texts are used for the 
assembly, the RECALL macro calls the system communication subroutine WNB= (wait not busy). 

Since recall may be entered when an input/output operation is initiated, the RECALL macro is needed only 
if some useful processing can be done in the time the input/output operation is being completed. 

STATUS INFORMATION 

TIME AND DATE MACROS 

The user can determine the date andtime in several formats by accessing clocks kept internally by the system. 
Each of these functions calls the system communication routine SYS=. 

CLOCK 

DATE 

JDATE 

RTIME 

TIME 

IOTIME 

7-18 

Current system clock in hours, minutes, and seconds 

Current date established at deadstart time when the system was loaded 

Current date in format yyddd for year and date 

Real time clock maintained by Monitor, in fractional seconds 

Central processor time allowed and used by job 

Input/output time allowed and used by job. 
60493800 C 



Each of these functions requires the user to identify a status word. The system returns the requested informa­
tion before clearing location RA+I to mark the function complete. 

The macros, and the format of the status returned, are given below. 

The system clock is that established when the operator loads the system. Display code hours, minutes, and 
seconds appear with periods and a leading blank as follows: 

CLOCK status 

59 35 17 o 

h h m m s s 

The date returned is that typed by the operator when the system was loaded. Its format is display code, and 
generally is mm/dd/yy for month, day, and year; this order may be changed at installation option. A 
leading and trailing blank appear. 

DATE status 

59 35 17 o 

m m I d d I y y 

Date in a format suitable for calculating elapsed days is returned with JDATE. Five display code characters 
appear in the IQw order position; the first two digits are the year. the last three the number of the day in the 
year. 

JDATE status 

59 29 0 

I 

Zeros 

I 

y y d d d-

I 
The real time clock is that maintained by Monitor for purposes such as determining peripheral processor time used. 
The status word will show seconds in bits 12-35 and units of 4096ths ofa second (244 9/64 microseconds) in 
bits 0-11. 

RTIME status 

59 

PP Queue 
Entry Count 

47 35 o 

undefined Seconds Times 4096 

The job time limit is that requested on the job statement or assigned by installation default. Central processor 
time used is shown in seconds and milliseconds. 

60493800 C 7-19 I 



I 

TIME status 

59 35 11 

Time Limit (Seconds) CP Time (Seconds) Milliseconds 

The 10 time liinit is requested on the job statement or assigned by installation default. Used 10 time is 
shown in seconds and milliseconds. 

IOTIME status 

59 35 11 

10 Time Limit (Seconds) 10 Time (Seconds) Milliseconds 

STATUS MACRO 

The STATUS function provides a user program with information about system resources. Two types of 
information are available depending on the value of the x parameter as described below. 

The call to this macro is: 

ST ATUS list,x,recall 

o 

o 

list Address of a header word containing the length of the area in which status information 
is to be returned. The status area begins at list+ 1. 

x x = 1 maps available space on all public rotating mass storage devices. 
x = 2 returns system information concerning files assigned to the user program. 
x = 3 PRU count for a file (or files) 
x = 4-777 reserved; 1000 to 7777 reserved for installation use. 

recall Optional recall parameter; any non-blank character. 

Format of the header word must be: 

59 

7-20 

Zeros 

list length 

length 
return 

a 

47 35 23 o 

List Length Length Return (Reserved) Zeros a 

Number of words, excluding this header word, to be used for return information; must 
be set by user to other than o. 

Number of status words returned; set by operating system when list is complete. 

Must be set to 0 before issuing a STATUS call. 

60493800 C 



The header word is also the auto recall reply word: when bit a becomes I, the request is complete. 

When x=l, the system returns one word of information for each rotating mass storage device available with 
the default allocation flag set in the RBR. Format is: 

59 56 47 35 23 17 11 o 

0 Status Device Type EST Ordinal Chan Eq Available PRU's 

status 9-bit binary field: 

000 Unavailable device 
020 Mounted device 
040 Dismounted device 
060 Idled device 

device type Hardware mnemonic in display code: 

AH 819 Disk Drive 
AM 841 Multiple Disk Drive 
AY 7054/844-21 Disk Drive 
AX ECS resident files 
AZ 7054/844-41 Disk Drive 

EST Position of entry for device in equipment status table (12-bit binary field) 
ordinal 

chan Channel number by which device can be accessed. 

eq Equipment (controller) number to which device is connected. 

PRUs Number of PRUs, divided by 100 octal, of space remaining" on the device; value of 7777 
indicates at least 262,100 PRUs available. 

When x=2, the status area contains one three-word entry for each file name, which should appear left-justified, 
zero-filled in the first word of each entry. If the file exists, the file name is replaced by the first three words 
of the file name table (FNT). If the file does not exist, the file name is zeroed out. Information in the 
FNT is used by some compilers. 

When x=3, the list length field in the STATUS macro list header word must specify two words for each file 
requiring size determination. The first word contains the file name, left-justified with zero fill. Upon return, 
the second word, bits 0 through 23, contains the PRU count for the me. 

FILESTAT MACRO 

The FILESTAT macro is an alternate for the STATUS macro: 

FILEST A T list,recall 

This macro is equivalent to: 

STATUS list,2,recall 

60493800C 7-21 

I 



FI LlNFO MACRO 

The FILINFO macro provides a user program with information about a file assigned to the user's control point. 

The call to this macro is: 

FILINFO addr 

addr Address of a five-word table to receive file information. 

Format of the header word must be: 

59 17 11 0 

addrl ~ ____ F_il_e_N_a_m_e ______________________ ~I_L_e_n_g_th ________ ~I_z_e_ro~s ____________________ LI~al 
file name 

length 

a 

A valid display-coded file name. Must be local to the user's job. 

Table length including the first word (should be set to 5). Must be at least 4. If set to 4, 
four words are returned. If set to 5 or more, five words are returned. 

Must be set to 0 before issuing a FILINFO call (will be set to 1 when the operation is completed). 

When the operation is completed, the table will have the following format. 

59 47 29 23 5 o 

addr + 1 Device Type Reserved (0) I Status I Ft 

addr + 2 Eq Reserved (0) 

addr + 3 NPRU I CPRU 

addr + 4 Reserved (0) 

• 7-22 60493800 C 



device type Hardware mnemonic in display code: 

AH 819 Disk Drive 
AM 841 Multiple Disk Drive 
AX ECS resident files 
AY 7054/844-21 Disk Drive 
AZ 7054/844-41 Disk Drive 
LM Link medium file 
MT 657 or 667 magnetic tape drive 
NT 659,669, or 679 magnetic tape drive 
TR 3691 Paper Tape Reader 
TP 3691 Paper Tape Punch 
LP Line printer (any) 
LQ Line printer (512) 
LR Line printer (580-12) 
LS Line printer (580-16) 
LT Line printer (580-20) 
CR Card reader (405) 
KB Remote terminal keyboard 
CP Card punch (415) 
DS Console display 
GC 252-2 Graphics Console 
HC 253-2 Hardcopy Recorder 

FM 254-2 Microfilm Recorder 
PL Plotter 

status Bits 23-21 Sequential file position: 

23 End-of-information 
22 End-of-file 
21 Beginning..ot:.information 

Bits 20-18 Magnetic tape characteristics: 

20 Labeled tape 
19 9-track tape 
18 1-track tape 

Bit 17 File is open 

Bit 16 File is connected to terminal 

Bit 15 File is on mass storage 

Bits 14-10 Reserved (0) 

60493800 D 7-23 I 



I 

ft 

eq 

NPRU 

CPRU 

GET JCI MACRO 

Bits 9-6 Permissions:t 

9 Modify 
8 Extend 
7 Write 
6 Read 

File type (6-bit binary field):' 

00 Local scratch 
01 Input (file name is INPUT) 
02 Output (print disposition) 
03 Punch (punch disposition) 
04 Permanent file 
77B Other disposition 

Equipment number, the EST ordinal of the device (l2-bit binary number) 

File size in PRUs (if RMS me): 

Bits 59-36 
Bits 35-30 

PRU count 
o 

Current file position (if RMS file) given as the number of PRUs from beginning­
of-information (beginning-of-information is indicated by PRU count=}): 

Bits 29-6 
Bits 5-0 

PRU count 
o 

The GETJCI macro allows a user program to transfer the job control information used by the CCL to a 
specified location in the job's central memory field length. Job control information fields can be changed 
by executing the GETJCI macro to obtain the current fields, then modifying the appropriate fields, and 
executing the SETJCI macro to save the new fields in the system area. 

The call to this macro is: 

GETJCI addr 

addr Address of a two-word table. 

t For mass storage files, read, extend, and modify reflect permanent file permissions. Write permission is 
set if either modify or extend permission is set. For magnetic tape files, modify, extend, and write 
permissions are set if the write-enable ring is present; cleared if the ring is absent. Read permission is 
set unless the file is a multifile tape. 

7-24 60493800 D 



Format of this header word must be; 

59 

addr I 
addr+1 

EFG 

RIG 

EFG 

EF 

CCLDATA 

EM 

ssw 

a 

EF 

53 

I 

35 

RIG 

I 
CCLDATA 

R3 R2 

Contents of global error register t 

Contents of global register t 

23 17 

jM 

Contents of CCL register, for CCL use only (read by GETJCI) 

Rl 

Value of error mode, set only by mode statement (read by GETJCnt 

11 

ssw 

Value of sense switches, set by SWITCH statement or by by SETJCI macro: 

Bit 6 
Bit II 

Switch I 
Switch 6 

5 

Complete flag, must be reset to 0 before execution and set to I when function is complete 

Value of error flag. (If not set by the user, the system sets EF when the job aborts. 

0 

a I 

If set to a non-zero number by the user, EF is saved by the system but does not cause job abort.) 

R3-Rl Contents of local registerst 

SET JCI MACRO 

The SETJCI macro allows a user program to transfer the job control information used by CCL from a speci­
fied location in the job's central memory field length. Job control information fields can be changed by 
executing the GETJCI macro to obtain the current fields, then modifying the appropriate fields, and executing 
the SETJCI macro to save the new fields in the system area. 

The call to this macro is: 

SETJCI addr 

addr Address of a two-word table. 

t These registers are CCL symbol names. 

60493800 C 7-25 • 



Format of this header word must be: 

59 

addr I EFG 

addr + 1 EF 1 

EFG 

RIG 

CCLDATA 

EM 

ssw 

a 

EF 

R3-Rl 

53 35 23 17 11 

RIG 

1 

CCLDATA I ;EM I sswl 
R3 R2 R1 

Contents of global error registert 

Contents of global registert 

Contents of CCL register, for CCL use only (ignored by SETJCI) 

Value of error mode, set only by MODE statement (ignored by SETJCI)t 

Value of sense switches, set by SWITCH statement or by SETJCI: 

Bit 6 
Bit 11 

Switch 1 
Switch 6 

Complete flag, must be reset to 0 before execution and set to 1 when 
function is complete 

Value of error flag. (If not set by the user, the system sets EF when the 
job aborts. If set to a nonzero value by the user, EF is saved by the system 

but does not cause job abort.) 

Contents of local registerst 

t These registers are CCL symbol names . 

. • 7-26 60493800 C 

5 0 

"I 



DEPENDENT JOB COUNT 

The dependency count of a job within a dependent string can be decremented from within a user program. 
This count also can be decremented by a control statement. Dependent jobs are explained in section 4 with 
the TRANSF description. Jobs in a dependent string do not execute until their dependency count is zero. 

The TRANSF macro is used to decrement the count qf a job dependent on the currently executing job. 

TRANSF list 

list Beginning address of a list naming the jobs for which the dependency count is to be 
reduced. 

Names in the list should be left-justified with zero fill; the last word must be all zeros. 

READING CONTROL CARDS 

With the CONTRlC function a central processor program can read or backspace within the control statements 
for the job. When the function is executed, the pointer to the next control statement is moved. The user is 
responsible for the resulting position of the control pointer. 

CO NTRlC ita tus,function,dfile ,crack 

status 

function 

Address of a reply word. 

Control statement pointer repositioning: 

READ 

BKSP 

Move the statement image to RA+70 (octal) through RA+77 (octal) and 
change the pointer to point at the start of the succeeding control statement. 
The optional actions, described later, are done on the statement image in 
RA+70. 

Change the pointer to point at the start of the control statement preceding 
the current statement. 

dfile Optional dayfile indicator. If non-blank the statement image is to be sent to the dayflle 
when the function is READ. 

crack Optional parameter; any non-blank character. When the function is READ, non-blank 
parameters from the statement are to be placed in locations RA+2 through RA+S3, aligned 
as shown below. 

The reply word also is used to pass the function code in bits 0-17. If the function type is specified as above 
in the macro call, the macro puts the code into the word. If the function field is blank, the user must put 
the proper value into the word. The following codes are used: 

000010 (octal) READ 000040 (octal) BKSP 

Bit 0 of the reply word is set to 1 when the function is complete. Bit 4 of the reply word is set to 1 if READ 
attempts to go past the last statement in the control statement record or in a CCL procedure. Bit 4 is also set 
to I if BKSP attempts to backspace past the job statement in the control statement record or past the procedure 
header stat.ement in a CCl procedure. 

60493800 D 
7-27 



I 

If parameter cracking is requested, the parameters are stored left-justified with zero fill in bits 18-59; and a code 
indicatin~ how the parameter ended is stored in bits 0-3. If the parameter is longer than seven characters, the 
first seven characters are stored with the 00 code and the parameter is continued in the next word. The word 
count is stored in bits 0-17 of RA+64 (octal). 

Processing stops when a terminator is found. The parameter ending codes are as follows: 

00 Continuation 05 Plus 

01 Comma 06 Minus 

02 Equals 10 Semicolon 

03 Slash 16 Other 

04 Left parentheses 17 Terminator 

In the cracking process, a statement is always considered to be a continuation statement. Blanks are always 
squeezed out and cannot be used to delimit the first parameter (keyword). Also the first parameter is always 
put in RA+2, the second in RA+3 (assuming the first parameter is less than eight characters), and so on. 

PROGRAM RECOVERY 

Two means are available to recover the results of a program that aborts during execution: 

The RECOVR macro can establish conditions under which control returns to the program after an error 
so that outstanding results can be saved or diagnostic information produced. The same results can be 
achieved by a direct RA+l call to RPV. 

The CHECKPT macro can call for a .checkpoint during execution, such that the program can be restarted 
from the last checkpoint in the event of a subsequent abort. 

RECOVR MACRO 

With the RECOVR macro, a user program can gain control at the time when normal or abnormal job. termination 
procedures would otherwise occur. Initialization of RECOVR at the beginning of a program establishes the con­
ditions under which control is to be regained and specifies the address of user recovery code. If the stated con­
dition occurs during program execution, control returns to the user code. 

RECOVR macro expansion calls the SETUP. subroutine. If necessary, the system increases the CP time limit, 10 
time limit, or mass storage limit to provide an installation defined minimum of time and mass storage for 
RECOVR processing. No limit is increased more than once in a job. 

RECOVR is concerned with conditions that affect job execution. The conditions under which control returns 
to the user, and the octal values that select them in the call to RECOVR, are: 

7-28 

Arithmetic mode error 001 
PP call or auto-recall error 002 
Time or storage limit exceeded 004 
Operator drop, kill, or rerun 010 

System abort 020 
CP abort 040 
Normal termination 100 

60493800 D 



Conditions can be combined as desired, with octal values up to 177 allow~d in the flag field of the call to 
RECOVR. 

At least five seconds of central processor time always are available for user code execution. RECOVR makes 
the exchange jump package and RA+l contents available to the program if user recovery code is executed, 
and gives the user .the option of having normal or abnormal job termination output. 

Initialization of RECOVR within code at the. beginning of a program results in an entry in a stack of requests 
for PP program RPV. Although RPV can be called directly by a Monitor request inRA + I, use of the 
RECOVR utility is preferable for all except stand alone system utilities because operating system rotitines 
themselves use this capability. Only one set of recovery conditions can exist within RPV, but RECOVR 
allows up to five user and system set of flags and code for each program. The last RECOVR inithllization 
will receive control first. 

The second specification of a subroutine overrides its previous parameters. This override can be used to 
remove a subroutine from the RECOVR list by passing a mask of zero. 

A checksum of the user recovery code can be requested during initialization. If flagged conditions subsequently 
occur, RECOVR again checksums the code before returning control to it. This gives some assurance of user 
code integrity before it is executed. 

RECOVR is initialized from a COMPASS program with: 

RECOVR name,flags,checksum 

name 

flags 

checksum 

Address of code to be executed if flagged conditions occur; a return jump is made to 
this location 

Octal value for conditions under which recovery code is to be executed, as outlined 
above; default is 77 

Last word address of recovery code to be checksummed; 0 if no checksum 

If one of the flagged conditions occurs, three arguments a~e passed to the reprieve-time subroutine. Al con­
tains the address of the argument list; Xl contains the address of the first argument. The arguments are the 
following: 

1. A 17 -word (decimal) array showing the program situation when RPV was called. The first 16 
words are an image of the exchange package. The seventeenth word is the contents of RA+1. 

2. A flag that determines the type of program termination. If the user sets the flag non-zero, 
ENDRUN termination occurs upon completion of the last post-processing subroutine. If the flag 
remains zero, the original error code and the exchange package are restored and the job continues 
as if RECOVR had not been called. Altering the exchange package passed as argument 1 prevents 
the correct completion of the restore, but does not impair system operation. 

3. An array, starting at RA+l, that allows a FORTRAN Extended subroutine to access all of the 
user's field length. 

The subroutines called by RECOVR should return; if they do not, additional subroutine calls, if any, and the 
register/error flag restore is not performed. 

60493800 C 7-29 I 



If a program calling RECOVR contains overlays, both the call to RECOVR and the user recovery code 
should be a part of the level 0,0 code. 

The exchange jump package returned by RECOVR is in the format shown with the DMP control statement, 
with the system error code that caused recovery code execution in bits 0-17 of the first word. If the P 
register shows zero in the package because a mode error occurred, bits 31-47 of RA+O contains the P register 
value. System error codes that may be returned are: 

Condition Error Code RECOVR Mask 
(octal) (octal) 

Normal termination 0 100 
Requested time limit exceeded 1 004 
Arithmetic mode error 2 001 
PP program requested abort 3 020 
CP program requested abort 4 040 
PP program cannot be called from RA + 1 5 002 
Operator DROP 6 010 
Operator KILL 7 010 
Operator initiated job rerun 10 010 
CP abort (ABT + bit 36) 11 040 
ECS parity error 12 020 
Required auto-recall status missing 15 002 
Job hung in auto-recall 16 002 
Requested mass storage limit exceeded 17 004 
xxx not in program library 20 002 
10 time limit exceeded 21 004 

The FORTRAN Extended language contains RECOVR subroutines as detailed in that reference manual. 

CALLING RPV DIRECTLY 

The PP program RPV can be called by setting RA+ 1 as follows: 

59 41 39 35 23 17 o 

RPV IH I Flags Recovery Add ress 

The code at the recovery address should allow for a 21 octal word array to be returned. Control is returned 
to word 22. 

An optional checksum of the recovery area can be requested in the user call. If the word at the recovery 
address contains all zeros, no checksum is taken. If the upper 30 bits contain the last word address of the 
recovery area, a checksum of the code address+21 through last word address is made and stored at the 
recovery address+ 1. 

, 7-30 6049~800 C 



CHECKPT MACRO 

A checkpoint of the program and files in use is obtained with the CHECKPT macro. The RESTART control 
statement is used to restart a job on the basis of information obtained from the checkpoint dump. See the 
CKP control statement for information about the checkpoint dump tape and other general information. 

An executing program would request checkpoint at various logical points, such as end-of-partition, x logical 
records processed, x seconds of elapsed time, etc. Checkpoint requests may be issued more than once. The 
request takes the following form: 

CHECKPT param,sp 

sp 

param 

59 

cpn 

~7 

cpn 

n 

lfn 

60493800 C 

Mass storage mes to be processed. 

o All files 

Non-zero Certain standard files plus files in a parameter list. Assumed 0 if sp is not given. 

Address of a parameter list formatted as follows: 

48 17 11 o 

n 0000 o 

Ifnl f1 
.-

Ifn2 f2 2 

.l.~ 

Ifnn fn 

Contains the checkpoint number unconditionally returned by CHECKPT. A zero value 
indicates no. checkpoint was taken. 

Defines number of lfn entries in following list, to a maximum of 42 (decimal). 

Name of user mass storage files to be processed; left-justified display code. 

n 

7-31 



f Octal number indicating specific manner in which Ifn is to be processed. 

o Mass storage file is copied from beginning-of-information to its position at check­
point time, and only that portion is available at restart. The file is positioned at 
the latter point. 

1 Mass storage file is copied from its position at checkpoint time to end-of­
information, and only that portion is available at restart. The file is positioned 
at the former point. 

2 Mass storage file is copied from beginning-of-information to end-of-information; 
the entire file is available at restart time. The file is positioned at the point at 
which the checkpoint was taken. 

3 The last operation on the file determines how the mass storage file is copied. 

When the manner of copying a mass storage file is to be determined from the last operation on the 
file, checkpoint derives f values from the last code status as follows: 

f = 0 if code/status ends in 4,5,6, or 7 or if code/status ends in 0, 1,2, or 3 and end-of­
information is set. 

f= 2 if code/status ends in 0, 1,2, or 3 and end-of-information bit is not set. 

The following standard files, if they exist, are always copied to the checkpoint dump tape. 

File 

INPUT 
OUTPUT 
PUNCH 
PUNCHB 
LGO 
CYBER Control Language Internal Files 

Default Copy 'Type 

2 
o 
o 
3 
3 
2 

The default copy type may be overriden by including the. file name in the parameter list. For any ftle to be 
copied which is in neither the standard ftle list nor the parameter list, the copy type is f=3. 

Generally, these values cause the entire mass storage fIle to be copied for: write operations, read operations 
resulting in end-of-information status, and rewind operations (excluding some OPEN functions). 

The checkpoint macro generates the following code in X6 followed by a return jump to SYS=. 

I~ I~ 
17 

1 CKP param sp 

7-32 
60493800C 



FILE ACTION MACROS 

Each of the following functions addresses a file by its logical me name. A me environment table must exist 
for the file before its residence and use can be specified. The FET creating macros may be used, or the pro­
grammer can construct his own FET· conforming to the format expected by the system. 

When any me action request is issued, values are returned to the device type, disposition code, and FNT 
pointer fields in the FET. 

All these functions, with the exception of READ IN and WRITOUT, expand to a sequence of code that 
includes a return jump to routine CPC. READIN and WRITOUT bypass CPC by calling the random indexed 
record processors directly. For the other functions, CPC will call the appropriate PP routines to carry out the 
function specified. 

Files manipulated by the following functions should not be manipulated by the functions described in the 
reference manual for the Record Manager within the same run. 

The macros which call CPC are contained in the CPCTEXT system text overlay. 

REQUEST MACRO 

File residence can be specified by a REQUEST control statement or macro, with the same results. 

File action requests must reference the logical file name (lfn) of the me. If the file is a member of a multi­
file set, all functions must reference the lfn of the set member. No function except REQUEST may be issued 
using the set name. 

The REQUEST function informs the system of file characteristics. 

REQUEST addr 

addr is the first word of a variable length parameter list constructed by the user. The list must be at least 
two words long; maximum length required is that which supplies the parameters indicated by bits set in the 
flag field. 

The parameter list must have the form shown below. The parameter list used with the REQUEST macro 
must be reinitialized after each call. Word 2, in particular, can be changed by the system during processing. 

60493800 C 7-33 I 



I 

59 47 35 23 17 11 o 

Logical File Name 
0 

(Status Return) 
o 

I 

Flags Flags 
Device Type; 
Allocation 1 

Volume Serial Number (CDC reserved) 2 

ECS Buffer 
Device Set Name 

Por K I Size 3 

Magnetic Tape File Header Label Information 4 
.. 

Magnetic Tape File Header Label Information n 

Parameters have the following meaning: 

7-34 

logical me name 

status return 

flag fields 

device type and 
allocation 

volume serial 
number 

device set name 

ECS buffer 

Logical me name, left-justified, zero-filled. 

Initially, user should set to zero. The system returns the codes given below. 

Each bit is a flag for a particular condition listed below. 

Bits 6-11 are the octal device type code listed in the FET description of section 5; 
allocation styles of that device (except tape units) are installation defined. 

Volume serial number identifying a particular device of a device set or a magnetic 
tape for automatic assignment. (Binary zeros in this field indicate a scratch tape.) 
When given, the VSN must be right-justified with display code zero fill. 

1-7 letters or digits of device set name left-justified, blank-filled, with th~ first character 
alphabetic. Bit 17 of word 2 (addr+l) must be set if this parameter is given. 

If the file is to be buffered through ECS, bit 33 of word 2 (addr + 1) must be set. The 
size of the buffer must be in bits 0-11, with bits 12-17 showing a display code P if the 
size is in pages, or a K if the size is in thousands of words. The ECS parameter can 
also be used on a CYBER 170 Model 17 6 to request a specific number of LCM buffers 
for buffering data to the 819 disk. A request for an 819 device without the ECS param­
eter results in the default number of LCM buffers. 

60493800 C 



tape label fields Label information for normal or extended label processing, formatted as shown 
below. Normal label processing is assumed unless bit 49 of word 2 (addr+ 1) is set. 

The flags are individual bits that should be set to 1 to indicate the following conditions; otherwise the bits 
should be O. 

Bit 

55 

54 

53 

52 

51 

50 

49 

~ 

33 

32 

31 

30 

29 

28 

27 

REQUEST 
Control Statement 
Equivalent 

*Q 

IB 

NO RING 

RING 

MN 

A* 

none 

none 

EC 

OV 

PF 

US 

EB 

*prefix to device 
type 

none 

Meaning 

1 = Assign file to queue device. Implies RMS device and causes automatic 
assignment. Not allowed for private device set. I 
Inhibit system noise records. 

Write enable ring prohibited in tape. 

Write enable ring required in tape. 

7-track or 9-track tape can be assigned. 

Assign any RMS device. 

Parameter list words 5-9 have extended label processing format. 

Parameter list words 5-9 have operating system label format. 

ECS buffering with parameters set in word 4. (Private device set files cannot be 
ECS buffered.) 

Overflow allowed to different device if that specified in word 2 is not available; 
if EP bit is set, a device capacity exceeded status is returned if no mass storage 
is available; permanent files overflow only to another permanent file device. 
OV implies RMS and forces automatic assignment. 

File must reside on a permanent file device. PF implies RMS and causes auto­
matic assignment. 

9-track tape conversion to ASCII codes. 

9-track tape conversion to EBCDIC codes. 

Device to be aSSigned')J'System rather than operator (OV, PF, A*, *Q causes 
bit 28 to be set.) . 

Format of operator flashing message; if set, contents of RA+70 through RA+77 
are displayed; if 0, REQ constructs the message from the REQUEST parameter 
list. 

When this bit is set, the flashing B display message is not put in either job or system dayfile. Also, since 
the request parameters are extracted from the parameter list, the operator may see a flashing message 
which bears no relationship to the actual request; and as a result, may assign an incorrect device. 

604?3800 D 7-35 



~ 

REQUEST 
Control Statement 

Bit Equivalent 'Meaning 

26 2 prefix to device Two magnetic tapes requested. (For two tape assignments, bit 28 and bit 25 
are cleared.) 

25 VSN Word 3 contains a volume serial number for a magnetic tape or device set 
member. Bit 25 is cleared if bit 26 is set. 

24 E Magnetic tape is labeled currently. 

----23 NS Non-standard labels on tape are considered data, not labels, by operating system. 
Not supported on SI tapes. 

22 NR Normal system tape read parity error processing is to be inhibited. 

2] Z Magnetic tape has Z format label of SCOPE 3.3, with character 12 of VOL1 
label establishing data density. 

20 none Special return of error code to user; do not issue dayfile message or consult 
operator. 

19 Reserved. 

18 MF Request is for a mu1ti"fJ1e set. 

17 SN Set name for a device set. 

16 Reserved. 

15 absence of Magnetic tape is to be written at system defau1t density. 
e~plicit density 

14 SV Output tape to be saved. 

13 IU Inhibit physical unload of tape. 

12 CK Checkpoint tape request. 

Format of the tape . label fields depends on whether normal label processing is requested. The label fields 
must be in display code format, with acceptable values for each field, as detailed in section 3. 

7-36 60493800 C 



Label information for normciI processing: 

59 47 29 

File Label Name 

File Label Name 

Edition 
Retention Cycle 

Number 

Multi-file Set Name 

Label information for extended label processing: 

59 53 41 35 29 

HDR1 

File Label Name 

a Multi-file Set Name 

b Position Number 

c Creation Date (yyddd) 

a File label name continued 

b Volume number continued 

c Edition number 

23 17 11 o 

Position Number 

Creation Date (yyddd) 

Volume Number 

17 11 5 o 

File Label Name 

Volume Number 

Generation Number c 

Once the REQUEST function is completed, bit zero of the first word of the parameter list is set to 1. In 
addition, bits 9-13 of word 1 may show one of the octal codes below. If so, the REQUEST function has 
been ignored and control returned to the program. 

22 Recall bit was not set in call to PP routine REQ 
24 File name table is full 
26 Device of the requested device type is unavailable I 
30 File is already assigned to a device; the device type code is returned to the device type field 

of the parameter list 

60493800 D 7-37 



Two dayfile messages result from a successful REQUEST function. The first, directed only to the operator, 
contains parameters corresponding to those used in the internal parameter list. After assignment, a second 
message is written to the job and system dayfiles reflecting the assignement. For example, if a REQUEST 
function is made with dt set to zero, the operator display shows no device type. If the operator assigns 'a 
7-track tape, however, the mnemonic MT appears in the job dayfile message. 

Conflicts between dt requested and dt assigned by the operator must be resolved by the operator using the 
n. YES or n.NO type-in. 

OPEN AND CLOSE FUNCTIONS 

Two functions are available for opening files: 

OPEN is applicable to all files 

POSMF is applicable only to labeled multi-file tapes 

Files can be closed with the following functions: 

CLOSE is applicable to all files 

CLOSER is applicable to sequential files on tape or on a device set; it gives the user control over end­
of-volume processing 

OPEN MACRO 

An OPEN function is a file initialization and status checking operation. The user must issue an OPEN if: 

Random files are to be processed by the user or system 

User label processing is to follow 

Sequential files are to be rewound without a REWIND function being issued 

Otherwise, OPEN is not necessary. If an OPEN function is to be issued, it should be the first function issued 
on a given file; otherwise the effect of the OPEN function is undefined. 

OPEN lfn,x,recall 

The x parameter may be any of the ten values: 

7-38 

absent 
READ 
REEL 
ALTER 
WRITE 

NR 
READNR 
REELNR 
ALTERNR 
WRITENR 

60493800 C 



The WRITE or WRITENR values of x may be used to ensure that the file circular buffer is emptied if the 
job terminates abnormally before buffer contents have been transferred to an output device. The first data 
function following these OPEN functions must not then be a read or a forward motion function. 

If the value of x is READ, REEL, ALTER, WRITE, or absent, sequential files are rewound. Any other value 
of x is not repositioned the file. 

When an OPEN is issued, the following events occur: 

For sequential files, file position is changed to beginning-of-information unless a no rewind is specified 
by using an x parameter ending in NR. The r bit in the FEr is set to zero. 

For labeled magnetic tape files, processing depends on the presence or absence of the XL bit in the FET. 
If the XL bit is set, all labels are written from or delivered to the file label buffer. If the XL bit is off 
and labels are being written, the HDRI label is formatted from data in the FET label fields. If labels 
are being read (XL off), the HDRI label is returned to the FET label fields. 

For random files, if the r bit is set, any existing index is read into the index buffer. If the index 
record is shorter than the buffer, unused buffer space is set to zeros. If the r bit is not set, an existing 
index is not read. 

For all files, the physical record unit and record block sizes are returned to FET fields. 

The macro OPEN generates the following code: 

59 47 41 39 

SAl 
-

000004 

The z field depends on x. 

160 if x is absent or ALTER 
140 if x is READ 
340 if x is REEL 
144 if x is WRITE 

Ifn 

Or 

29 17 

RJ CPC 

z 

120 if x is NR or AL TERNR 
100 if x is READNR 
300 if x is REELNR 
104 if x is WRITENR 

o 

There is no difference in the action taken by the system for codes 160, 140 and 340; or for codes 120, 100 
and 300. 

POSMF MACRO 

The POSMF function positions standard labeled multi-file sets. The multi-file set to be positioned is specified 
by the multi-file name in the label fields of the FET or, if the XL bit is on, in the HDRI label field in the 
extended label buffer. The named multi-file set is positioned to a particular file and an OPEN with rewind 
function is performed. If a position number is specified in the label field or label buffer, that number specifies 
the file to be opened. 

60493800 C 7-39 I 



POSMF mfn,recall 

mfn FET name of multi-me set 

recall Non-blank value if for auto recall; otherwise, blank 

The position number is specified in either word II of the FET or the extended label buffer, depending on 
the label processing to be performed. If normal label processing is to occur, bits 0-17 of word II of the 
multi-file name FET may contain the position number (position numbers begin with I for the first file). For 
extended label processing to occur, the XL bit must be set (bit 41 at mfn + I). The position number is 
expected to be in the ANSI standard position field of a record formatted as an HDRI label-within the label 
buffer. A fatal error exists if HDR I is not found within the label buffer. 

If the position number is 0, the set is positioned at the beginning of the next file. OPEN procedUres for an 
existing fIle follow. If the position number. is 999 in the FET or 9999 in the label buffer, the set is positioned 
after the last member file and OPEN procedures instituted for a new file. 

End-of-set status (21 in bits 9-13 of mfn) is returned to the FET for the multi-file set if the explicit or 
.. implied position number is greater than the last member of the set. The position field in the FET will be 

one greater than that of the last member file. 

The POSMF macro generates the following code: 

59 47 4139 29 17 

SA1 Ifn RJ CPC 

000003 (] r 000110 
.... 

CLOSE MACRO 

A CLOSE function is a file terminating operation. The user must issue a CLOSE if: 

Random files have been created or modified and a valid index is to be saved 

End-of-job procedures listed below are to be initiated for a file before the actual end-of-job 

Otherwise, a CLOSE is not necessary. 

CLOSE ltn,x,recall 

The x parameter may be: 

absent 
NR 
UNLOAD 
RETURN 

I 7-40 

o 

60493800 C 



If the value of x is absent, UNLOAD, or RETURN, the file is rewound. NR specifies that the file is not to 
be rewound. Both of these positionings are possible only with sequential files; positioning is not defined on 
files for which an index is written. 

When a CLOSE is issued, the following events occur: 

For sequential files, position will be changed according to the rewind associated with the x parameter. 

For labeled magnetic. tape files, action depends on the x parameter. If no rewind is specified and the 
me is positioned after a newly written record, a file mark and an EOP trailer label is written, then the 
me will be positioned immediately before the me mark. If the file is to be rewound and it is 
positioned after a newly written record, an EOP trailer label is written before the rewind is initiated. 

For unlabeled Sand L tape files, four tape marks are written instead of an EOP trailer label. Otherwise, 
processing is the same as for labeled tape files. 

For random files, the index is written as the last system-logical-record if the FET r bit is set, an index 
buffer is specified, and file contents have been altered since the last OPEN function was issued. 

The user must empty the file circular buffer when files are being written; CLOSE does not empty the buffer. 

When CLOSE/RETURN or CLOSE/UNLOAD is issued, end-of-job processing procedures occUr for the named 
file. 

Permanent files are detached from the job. 

For magnetic tape files, a CLOSE/RETURN decreases the number of tape units required by the job as 
indicated with the MT or NT parameter on the job statements. A CLOSE/UNLOAD does not decrease 
this value. A CLOSE/UNLOAD or CLOSE/RETURN function issued on a member of a multi-file set 
acts as a CLOSE/REWIND on that member. 

The CLOSE macro generates the following code: 

59 47 

SAl 

000007 

The z field depends on x. 

150 if x is absent 
130 if x is NR 
170 if x is UNLOAD 
174 if x is RETURN 

60493800 C 

41 39 

Ifn 

Or 

29 17 o 

RJ CPC 

z 

741 I 



CLOSER MACRO 

Processing of both magnetic tape and device set files continues across volume or device boundaries when data 
is skipped in a forward direction, read, or written. With the UP bit of the FET the user can request notifica­
tion when a boundary is about to be crossed; and volumes or devices can be processed in other than ascending 
order. 

The CLOSER function affords a degree of user control over processing at end-of-volume or end-of-device: 

CLOSER lfn,x,recall 

The x parameter may be: 

absent 
NR 
UNLOAD 
. RETURN 

Rewind 
No rewind 
Rewind and unload 
Rewind and unload; do not swap reels 

MAGNETIC TAPE PROCES'SING 

For magnetic tapes, the system initiates volume swapping if the UP bit is 0 when CLOSER is issued. The file 
is positioned on the next volume and file operations can continue normally. An OPEN function is not required 
for the second volume, but may be issued if the program is to receive the header label contents. 

A volume swap is performed by the following steps: 

1. If the tape is positioned after a newly written record, a volume trailer label is written. 

2. The tape is unloaded and the operator is notified that processing on that volume is completed. 

3. If two units were assigned to the file, unit numbers are interchanged so processing continues with­
out changing tables r<eferencing the unit. 

4. The volume number of a labeled file is incremented by one in the system label table and, if 
declared, in the user's FET label fields. 

5. The FET completion bit is set. End-of-volume status is not returned. 

If· the UP bit is set to 1 when the CLOSER is issued for a tape file, the user may specify the next volume to 
be processed. The following occurs: 

1. If the tape is positioned after a newly written record, a volume trailer label is written. 

2. The tape is rewound or rewound/unloaded according to the CLOSER parameter. 

3. The operator is notified that processing on that volume is completed. 

4. If two units were assigned to the file, unit numbers are interchanged. 

5. The end-of-volume status and completion bits are set. 

7-42 60493800 C 



To establish the next volume to be processed, the user must enter the volume number in the. FET label field 
(bits 0-24 in word 13) before another function is issued to the file. A following OPEN function is not 
required unless the program uses the header label of the new volume. 

When CLOSER/RETURN is issued, normal end-of-volume processing is performed regardless of the UP bit. 
Instead of swapping to the next volume as in the CLOSER macro, the file is returned (disassociated from 
the job). 

End-of-volume processing for CLOSER/RETURN is performed by the following steps: 

1. If the tape is positioned after a newly written record, a volume trailer label is written. 

2. The reel is unloaded according to the IU parameter on the REQUEST statement. 

3. The FET completion bit is set; end-of-volume status is not returned. 

4. The FNT entry is cleared and FET IN/OUT pointers are set to FIRST. 

ROTATING MASS STORAGE DEVICE PROCESSING 

For an RMS device, the operating system performs the following: 

1. If the file is at EOI and the last RBT word pair is not an overflow word pair, an EOI status (bit 
9) is returned in the FET and FST; and an overflow word pair is added at the end of the RBT 
chain. 

2. If the file is at EOI and the last RBT word pair is an overflow word pair, an EOI status is 
returned in the FET and FST. 

3. If the file is not at EOI but pQSitioned on an overflow word pair, the current position in the FST 
is updated and points to the RBT word pair following the overflow word pair. 

4. If the fue is not an EOl and is not positioned on an overflow word pair, the system skips to the 
next overflow word pair or to EOI (whichever it finds first) and then takes action as described 
above. 

In all cases, the completion bit is set in the FET and FST and the end-of-device status (bit 10) is set in the 
FST. If the UP bit is set in the FET, then the end-of-device status is also returned in the CS field of the 
FET. 

Processing continues on the next device as soon as the user issues another input/output function for the file. 

The macro for CLOSER generates the following code: 

59 47 4139 29 17 o 

SAl Ifn RJ CPC 

000007 o r z 

60493800 C 7-43 



The z field depends on x. 

350 is x is absent 
330 if x is NR, although result is the same as 350 
370 if x is UNLOAD 

I 374 if x is RETURN 

READ FUNCTIONS 

Six read functions are available for bringing information into central memory. The functions, and the main 
distinctions among them, are: 

READ Applicable to all mass storage and tape files. Reading stops when the end of a physical 
record or the end of a system-logical-record of level 0-16 is encountered. 

READNS Applicable to mass storage files only. Read does not necessarily stop at end-of-Iogical 
record. 

READSKP Similar to READ, but positions file to beginning of next logical record when the circular 
buffer is filled. 

RPHR Applicable to magnetic tapes in SI format only. Reads the next PRU delivering coded 
data in internal BCD codes (7-track).For 9-track SI tapes, the data is read in packed mode 
and delivered with no conversion. 

READN Applicable to magnetic tapes in S and L data format only. 

READIN Applicable to all mass storage and tape files. 

All of these functions read information into the file circular buffer, with the amount of information read 
dependent on the specific function and the size of the buffer. As information is read into the buffer, bperat­
ing system routines change the value of the IN pointer. This value, minus 1, is the address of the last word 
read. The user is responsible for using the IN pointer while removing information from the buffer, and for 
setting the OUT pointer to reflect the move, except when the READIN macro is called. READIN, like 
WRITOUT, relieves the user of responsibility for IN and OUT pointer manipulation. By means of a secondary 
buffer called a working storage area, READIN maintains circular buffer pointers. 

As processing progresses, status information is returned t6 the code and status field of the FET. If the user 
has the EP bit set, control returns to his program for OWNCODE routine execution when file action errors 
occur. Otherwise, the operator is notified and given the option to drop the job. 

The 18 bit code and status field will show the values listed below for the conditions that cause various -read 
functions to terminate. Bits in the field have the purposes: 

Bits 14~17 
Bits 9-13 
Bit 4 
Bit 3 
Bit 1 
Bit 0 

System-logical-record level num~er 
File action error code 
End-of-Iogical-record indicator 
End-of-partition indicator if bit 4 is set 
Mode indicator: 0 for coded, 1 for binary 
Complete bit 

For binary files, the low order octal digit of the code and status is 3 instead of 1. 

7-44 60493800 C 



Condition 

End-of-information encountered 

Zero-length PRU of level xx is read 

Level 17 system-logical-record or level 16 mass 
storage me read with READNS 

Next PRU will not fit into circular buffer 

Unrecoverable me action error code ee 

Code/Status Setting for Coded Files 

741031 

xxOO21 

740031 

000011 

Oee011 

File action error codes are listed in the Error Exit Address field in the FET discussion of section 5. 

When a read for a me is issued without recall, the IN pointer is updated as each PRU of data is moved to 
the buffer, allowing the user to remove data as fast as it is placed in the buffer. When the request is issued 
with recall, the pointer is not changed until the request is complete. For magnetic tape, the code status 
(bits 11, 12) is set for each record before the IN pointer is moved. Tapes can be read dynamically as 
follows: 

EP must be on. 

Check to determine if IN has moved; if not, repeat check. 

When IN has moved, check CS field for errors. If none, process record. If errors occurred, wait for 
complete bit to set. 

For S and L format files, the UBC field is set as a record is read. 

All the following read functions, except READIN, expand to a two-word sequence of code which includes a 
return jump to routine CPC. The READIN function expands to call routine 10 or 10RANDM, which calls 
CPC. 

Parameters appearing in the macros are: 

lfn Logical me name 

recall Optional recall parameter of any letter or digit 

READ MACRO 

The READ function is applicable to all types of files. READ causes information from the specified me to 
be placed in the circular buffer for the file in central memory. 

READ lfn,recall 

60493800 C 7-45 I 



r Reading begins as long as the circular buffer has room for at least one physical record unit. It continues 
until: 

The next PRU will not fit into the circular buffer. 

End-of-Iogical~record or end-of-partition is encountered. 

End-of-information is encountered. 

File action error occurs. 

For Sand L tapes, one physical record is read. 

If the end-of-Iogical-record bit (bit 4 of word 1 of the FET) is set when READ is called, CPC ignores· the 
request. 

For Sand L tapes, the unused bit count is returned to the UBC field in the FET word 7 when the read is 
complete. 

The READ macro generates the following code: 

59 47 4139 29 17 o 

SA1 Ifn RJ CPC 

000002 Or OOO(}10 

READNS MACRO 

The READNS function is applicable only to mass storage ftles. A single READNS often results in more 
information being transferred to the circular buffer than a READ issued to the same file since reading does 
not necessarily stop at the end of a logical record. 

READNS lfn,recall 

Reading begins if the circular buffer has room for at least one physical record unit. Reading continues until: 

The next PRU will not fit into the circular buffer. 

Zero-length system-logical-record of any level is read. 

Level 16 or 17 system-logical-record is read. 

End-of-information is encountered. 

File action error occurs. 

I 7-46 60493800 C 



The READNS macro generates the following code: 

59 47 41 39 29 17 o 

SAl Ifn RJ CPC 

000002 Plr 000250 

READSKP MACRO 

The READSKP function is applicable to all types of files. READSKP is used to identify and skip records. 
Reading continues until an end-of-Iogical-record is encountered, or the circular buffer is full. Once the buffer 
is full, the file is repositioned to the beginning of the next record. READSKP is halted by any conditions 
which halt a READ. 

READSKP lfn,lev;recall 

lfn Logical file name 

lev Optional level number 0-17. Default value is O. 

recall Optional recall indicator. 

If a level parameter lev is specified for SI tapes or mass storage files, information is skipped until the 
occurrence of an end-of-Iogical-record with a level number greater than or equal to the one specified. For S 
and L tapes, only a request with level 17 is recognized; any other level in the request is ignored. 

When the READSKP is executed, the end-of-Iogical-record bit (bit 4 in word 1 of FET) is set, since an end­
of-logical-record is encountered in the skip to the beginning of the next record. This bit must be cleared by 
the user program before a subsequent READ, but not a READNS, is issued. When EP=I, a READ error 
prevents the skip; and control returns to the user. 

For Sand L tapes, the user should set the MLRS field before the READSKP is issued. If this field has a 0, 
the system sets it to 512 words for an S tape and to LIMIT-FIRST -1 for an L tape. 

An end-of-volume condition on a magnetic tape file with the UP bit set terminates the skip of a READSKP 
even if the beginning of the next record has not been encountered. Otherwise, volume swapping takes place 
under system control. 

The READSKP macro generates the following code: 

59 47 41 39 29 17 13 o 

SAl Ifn RJ CPC 

000003 Or lev 00020 

60493800 C 747 I 



RPHR MACRO 

The RPHR function is applicable only to magnetic tapes in SI format. RPHR causes all information existing 
in the circular buffer to be discarded and the next PRU to be read into the buffer. 

RPHR lfn,recall 

For coded 7-track mes, data is converted from external to internal BCD only. Conversion to display code is 
not made. No conversion takes place for 9-track tapes; the data appears as written. SI tapes are always 
written to contain exact. multiples of central memory words by filling the last word with zeros. 

The RPHR macro generates the following code: 

59 47 41 39 29 17 o 

SA1 Ifn RJ CPC 

000003 o r 000000 

-

READN MACRO 

The READN function is applicable only to magnetic tape in S or L format. READN allows maximum tape 
throughput; as long as the user provides space in the circular buffer for two records and their header words, 
tape reading continues without releasing and reloading the read routine between physical records. This 

. gives· maximum utilization of interrecord gap time. The minimum buffer size for reading an S or L tape should 
be two words more than the maximum logical record size (MLRS field of the FET). 

READN lfn,recall 

Before this function is issued, the MLRS field of the FET (bits 0-17 of word 7) must be set to the largest 
physical record that will be encountered. File mode must also be set. 

Reading continues until: 

The next record will not fit into the circular buffer. 

End-of-partition is encountered 

End-of-information is encountered. 

File action error occurs. 

The header word that precedes each physical record in the circular buffer is generated by the system; it does. 
not exist on the tape. The format of the header word is: 

59 29 23 17 0 .1"'-------I UBC ----I --r-I -CM-wordS -I 
I 7-48 60493800 C 



CM words Number of 60-bit words in the physical record 

UBC Number of bits in the last word that are not valid data 

After each complete physical record has been placed in the buffer, the system moves the IN pointer to 
reflect both the header and data. 

The READN macro generates the following code: 

59 47 41 39 29 17 o 

SAl Ifn RJ CPC 

000003 Or 000260 

READIN MACRO 

The READIN function is applicable to all mass storage and tape files. READIN employs a user-provided 
working storage area as well as the file circular buffer. The user deals only with data in the working storage 
area; the system handles the circular buffer and the IN and OUT pointers of the FET. 

Format of the READIN macro depends on the structure of the file being accessed. The second parameter is 
required only if the file is a random indexed file with a name or number index. 

When READIN is _executed, data from the circular buffer is placed in the working storage area. The amount 
of information transferred depends on me mode: 

For binary mes, READIN fills the working storage area unless an end-of-logical-record or end-of­
information is encountered before the area is full. 

For coded files, information is moved to the working storage area until a 12-bit zero byte in the low 
order bits of a word (end-of-line indicator) is encountered or the working storage area is full. When a 
zero byte is encountered, two blanks are substituted and the remainder of the area is filled with blanks. 
If a zero byte is not met before the working storage area is full, the remainder of the line is· skipped. 
The next READ IN request obtains the next line rather than the end of the first line. 

READ IN issues calls to READ through CPC as needed. If the data in the buffer does not satisfy the 
READIN request, a READ with recall is issued. Therefore, the user does not gain control until his request 
is satisfied. 

If a working storage area is not specified, a READIN request has no effect, except as described below for 
indexed random meso 

READIN makes a check of the I/O progress immediately prior to returning to the user program. A .READ 
without recall is issued if the circular buffer is not already busy and it is more than half empty, so that 
input/output is buffered with subsequent computing by the user program. 

60493800 C 7-49 I 



Sequential or random files are read with the following macro: 

READIN lfn 

When an end-of-Iogical-record or end-of-partition is encountered during a read of a sequential file, the user 
regains control immediately, with the Xl register showing the state of the request. Filling of the working 
storage area ceases. The next READIN request begins with the next record. 

Status information in the Xl register may be: 

positive zero 

positive non-zero 

negative non-zero 

Requested number of words was read and the function completed normally. 

The working storage area was not filled because the remainder of the logical 
record contained too few words when the READIN was issued. Xl contains 
the address of the first unfilled word, or if no data was transferred, the first 
word address. F or coded files, this is always the first word address. 

No data was transferred to the working storage area because an end-of-
partition or end-of-information was encountered. . 

When an indexed random file has named or numbered records, READIN positions the file to the desired 
record. 

READIN lfn,/name/ 

READIN lfn,n 

/name/ Name of record 

n Number of record 

When a READIN is issued for such an indexed random file, the current contents of the circular buffer are 
destroyed when the IN and OUT pointers are set equal. Then, the mass storage address corresponding to the 
record number or name is copied from the index into FET word 7, and a READ request wi th recall is 
passed through CPC. On return from the READ, the procedures for a READIN without a name or number 
parameter are followed. If a working storage area is specified in the FET, the beginning of the record is 
copied into it and the FET pointers are adjusted. If no working storage area is specified, no further action 
occurs; however, the file has been positioned and reading of the desired record has been initiated by READIN. 

Any remainder of the record can be read by subsequent READIN requests that do not identify the record by 
name or number. After an end-of-Iogical-record is encountered on a random file, further READIN requests 
specifying only a file name will not initiate reading of the next record, as they would on a non-random file. 
To start reading the next record, or some other record' on a random file, a READIN with a record name or 
number must be issued. 

When a record is located by a READIN request containing its name or number, the number of the record is 
stored in word 8 of the FET, making it possible to read the next record with: 

READIN Ifn,O 

I 7.50 60493800C 



The system interprets this statement as record n+l. Consequently, by starting a new record with a request 
that identifies record number zero, the list of records as given in the index can be read. However, if the 
calling program did not stop before overshooting the end of the index, there would be an error return from 
READIN on the last+ 1 record. 

The code generated by the READIN macro depends on the second parameter. F or no parameter, a name 
parameter, and a number parameter, respectively, the code is: 

59 29 17 o 

RJ IOREAD 

Ifn 

59 29 17 o 

RJ IORR 

Ifn 

name 

59 29 17 o 

RJ IORR 

Ifn 

n 

WRITE AND REWRITE FUNCTIONS 

Information is transferred from the me circular buffer to a storage device when one of the write functions· is 
issued. These functions, and the main distinctions among them, are: 

WRITE 

WRITER 

60493800C 

Applicable to mass storage and tape files; writes at end-of-information 

Applicable to mass storage and SI tapes; writes a short or zero-length PRU to indicate 
end-of-Iogical-record 

7-51 I 



WRITEF 

WPHR· 

WRITEN 

WRITOUT 

REWRITE 

REWRITER 

REWRITEF 

WRITIN 

Applicable to mass storage and magnetic tape fIles; writes an end-of-partition indicator 

Applicable to magnetic tapes in SI format only; writes a single physical record; the 
only write function that expects coded data in internal BCD format. No conversion is 
performed for 9-track coded tapes. 

Applicable to S and L data format tapes only 

Applicable to mass storage and tape files; the only write function in which the system, 
rather than the user, manipulates the buffer pointers of the FET 

Applicable to mass storage only; rewrites record of same length 

Applicable. to rp.ass storage only; writes an end-of-Iogical-record indicator for a 
rewritten record 

Applicable to mass storage only; writes an end-of-partition for a rewritten fIle 

Applicable to mass storage fIle to be rewritten only; analogous to WRITOUT using 
REWRITE rather than WRITE 

The system sets the OUT pointer when data is removed from the buffer. The user must manipulate the IN 
pointer as he places information in the buffer, as explained under Circular Buffer Use in section 6. 

When Sand L tapes are being written, the MLRS and UBC fields in the FET must· be set by the user to 
indicate the size of the record before a write is issued. 

Status information and error codes are returned to the first word of the FET as the' file is written. If the 
user has the EP bit set, control returns to his program for OWNCODE execution when file action errors 
occur. Otherwise, operator is notified and given the option to drop the job. 

Parameters that appear in the write macros are: 

lfn Logical me name 

recall Optional recall parameter consisting of any non-blank letter/digit character string 

WRITE MACRO 

The WRITE function transfers' information from the fue circular buffer to the file storage device. WRITE is 
applicable to both mass storage files and tapes. 

WRITE lfn,recall 

For mass storage fIles and tapes in SI format, only full PRU's are written. The size of the PRU depends on 
the storage device. Writing continues until: 

The buffer is empty. 

Data in the buffer does not fill . a PRU. 

I 7-52 60493800 C 



A following WRITER request will empty the buffer. 

For tapes in S or L format, only one record is written for each request. The length of the record is 
determined by the value of the IN and OUT pointers. If the record length exceeds the MLRS field value 
(bits 0-23 of word 7) in the FET, the job terminates with an error. 

When a WRITE function is completed on any type of file, end-of-information (EO!) is established immediately 
after the position just written. Any informatiori that may have existed beyond that point on the file is lost. 
When the FET random bit is on, the file is positioned at EOI before writing is done. On permanent files, a 
WRITE function is permitted only at EO!. 

A REWRITE function is used to modify data in the middle of a mass storage file, the WRITE function cannot 
accomplish such action. 

The WRITE macro generates the following code: 

59 47 41 39 29 17 o 

SAl Ifn RJ CPC 

000002 o r 000014 

WRITER MACRO 

The WRITER function causes the circular buffer to be emptied and an end-of-logical-record indicator to be 
written. For mass storage files and tape files in SI format, a short or zero:-length PRU is written. For S 
and L format tape files, WRITER is equivalent to WRITE. 

WRITER lfn,lev,recall 

lfn Logical file name 

lev Optional level number 0-17. Default value is O. 

recall Optional recall indicator 

WRITER is processed the same as WRITE, with the following additions: 

For mass storage files and tapes in SI format, the data in the circular buffer is written out followed by 
an end-of-Iogical-record marker. A zero-length PRU is created if necessary; otherwise a short PRU exists. 
If the level parameter is present, it is included. If the buffer contains no data when WRITER is issued, 
a zero-length PRU is created. If the specified level number is 17, the system changes the WRITER 
request to a WRITEF. 

60493800 C 7-53 I 



The WRITER macro generates the following code: 

59 47 41 39 29 17 13 o 

SA1 Ifn RJ CPC 

000003 Or lev 00024 

WRITEF MACRO 

The WRITEF functio~ produces an end-of-partition. Any information in the buffer is written out before the 
end-of-partition is written. 

WRITEF lfn,recall 

For mass storage files and tapes in SI format, WRITEF produces a zero-length PRU of level 17. Data in the 
buffer is written ~ut and terminated by a zero level end-of-Iogical-record before the zero~length PRU is written. 
If the buffer is empty and the l_ast operation was a write, a zero-length PRU of level 0 is written before the 
level 17. 

For Sand L tapes, data in the buffer is written to tape and followed by a physical tape mark. 

The WRITEF macro generates the following code: 

59 47 41 39' 29 17 o 

SA1 Ifn RJ CPC 

000003 Or 000034 

WPHR MACRO 

The WPHR function is applicabl.e only to magnetic tape in SI format. It causes all information in the. circular 
buffer, to a limit of 512 words, to be written as a single physical record. Data to be written to 7-track tape 
must be in internal BCD codes. Only internal to external BCD conversion is performed before writing; no 
conversion is performed for 9-track tapes. 

WPHR lfn,recall 

If the buffer contains fewer than 512 (decimal) words, the IN and OUT pointers in the FET are set equal 
when writing is completed to show an empty buffer. If the buffer contains more than 512 words, only the· 
first 512 words are written. The IN and OUT pointers will be set by the system to show that more data 
exists in the buffer. Status returned is 10, indicating device capacity exceeded. 

A WPHR issued for any device other than magnetic tape in SI format is ignored. A 22 status is returned to 
show an illegal function call, terminating the job. 

I 7-54 60493800 C 



The WPHR macro generates the following code: 

59 47 41 39 29 17 o 

SA1 Ifn RJ CPC 
000003 Or 000004 

WRITEN MACRO 

The WRIT EN function is applicable to magnetic tape in S or L format only. It allows maximum use of the 
interrecord gap time as long as the user provides at least two records and their control words in the circular 
buffer. 

WRITEN lfn,recall 

Writing continues until: 

Buffer is empty. 

End-of-volume is encountered. 

File action error occurs. 

No action takes place if the buffer is empty. 

The user must provide a header word immediately preceding each record in the buffer. This header is not 
physically written on the tape. Its format is: 

59 29 23 17 0 

I-------------I-UB-C-I -----CM-WO~-dS--1 
CM words Number of 60-bit words in the physical record 

UBC Number of bits that are not valid data in the last word 

The system compares the MLRS and UBC fields in the FET using information from this header. 

The OUT pointer is not changed to reflect the move until after each complete record has been written to 
tape. The user should not move the IN pointer beyond the header word until the header and the complete 
record are in place, or an error will result. 

60493800C 7-55 I 



The WRITEN macro generates the following code: 

59 47 41 39 29 17 o 

SA1 Ifn RJ CPC 

000002 Or 000264 

WRITOUT MACRO 

The WRIT OUT function is applicable to all mass storage and tape files. It employs a user-provided working 
storage area as well as the file circular buffer; when the buffer is full the system issues a WRITE function to 
transfer data from the buffer to the file storage device. With random indexed files, the user has the option 
of using either WRITOUT to position a file and manage the circular buffer himself, or providing a working 
storage area and letting the system manage the buffer. Otherwise, the user deals only with data in the work­
ing storage area; the system handles the circular buffer and both the IN and OUT pointers of the FET. 

W\len WRITOUT is executed, data in the working storage area is transferred to' the circular buffer. No record 
boundaries are assumed, with all data placed in the buffer by WRITOUT being considered a single logical 
record. Until the user issues a WRITER or WRITEF to empty the buffer, a single record exists. The system 
empties the buffer as necessary to accommodate new data being moved into the buffer. As with the READIN 
function, the system buffers input/output with computing by checking the buffer just before returning to the 
calling program, and issuing a WRITE without recall if the buffer is more than half full. WRITE functions 
with recall are issued when it is necessary to empty the buffer before carrying out the WRITOUT request, so 
that :the WRITOUT function completes before control returns to the user program. 

The amount of data transferred from the working storage area· to the buffer depends on the me mode: 

For binary mode. mes, the entire working storage area is transferred. 

For coded mode files, trailing blanks are removed and a 12-bit zero byte is inserted in the low order 
position of a word to indicate end-of-line. 

Sequential flIes are written with: 

WRITOUT lfn 

A WRITER function must be used to terminate a record. If a working storage area does not exist for a 
sequential or random file, the WRITOUT is ignored with no error indication. 

An additional parameter is required when the file has indexed records. To declare the beginning of an indexed 
record, -one of these forms of the macro is used: 

WRITOUT lfn,/name/ 

WRITOUT lfn,n 

/name/ Name of record 

I 7-56 60493800 C 



n Number of record; if n is 0, the number is one greater than the last number, with the first 
record being numbered 1 

To continue writing the same record, this form is used: 

WRITOUT lfn 

To terminate the record, the WRITER macro should be used, although the system issues WRITER under circum­
stances noted below. 

WRITER lfn 

An alternate method of processing indexed records is to use WRITOUT with a record identifier, then fill the 
circular buffer directly and issue a WRITE request without using the working storage area. A WRITER request 
is still needed to terminate the record. 

When a WRITOUT identifying an indexed record is issued, the system performs the following: 

If the buffer contains data from a previous WRITOUT, or the last operation was a completed write rather 
than write end-of-logical-record, a WRITER occurs. 

The IN and OUT pointers are set equal to indicate an empty buffer and the FET status is set to show that 
write was completed. 

The random file index and the eighth word of the FET are set to the correct record. 

The working storage area is transferred to the circular buffer as the beginning of the new record identified 
in the WRITOUT. 

If the buffer contains at least one PRU of data. WRITE is called. 

When a working storage area does not exist for an indexed file, or the length of the area is 0, the same 
procedures occur with the omission of any transfer of data to the buffer. 

The code generated by the WRITOUT macro depends on the parameter list. For no second par-ameter, a 
name parameter, or number parameter, respectively, the code is: 

59 29 17 

RJ IOWRITE 

Ifn 

60493800 C 

o 

7-57 I 



I 

59 29 17 o 

RJ IORW 

Ifn 

name 

-' 

59 29 17 o 

RJ IORW 

Ifn 

-- n 

REWRITE MACROS 

The functions REWRITE,REWRITER, and REWRITEF update records in existing mass storage files. A fourth 
rewrite function, WRITIN, can be used similarly to WRITOUT; it can be used in conjunction with REWRITE, as 
the WRITOUT function with WRITE, and the REWRITER function should be used to terminate the record 
rewritten. These functions do not change the total amount of mass storage assigned to the file, nor do they update 
any index which may be associated with the file. 

All of these functions call for writing in place, not writing at end-of-information. Since the system cannot determine 
the length of the original record, it offers no protection from over-writing or under-writing and does not issue diag­
nostics when these conditions occur. The system guarantees only that a rewritten record does not extend beyond the 
file end-of-information, with writing taking place up to that point and a diagnostic issued if the program attempts to 
go beyond that point. End-of-information is never moved. The index record existing at the end of random file is not 
protected. 

Rewrite functions are similar to WRITE, WRITER, and WRITEF. Parameters for the macros are the same. 

REWRITE Ifn,recall 

REWRITER lfn,lev,recall 

REWRITEF Ifn,recall 

The user is responsible for knowing file structure before and after the rewrite. A minimum of one PRU is 
transferred from the circular buffer to the file each time a rewrite function is issued. Writing always begins 
at the current file position. Therefore the user must see that the me is positioned properly before writing 
takes place. 

7-58 60493800 C 



The amount of information rewritten for each call depends on the amount of information in the circular 
buffer, with the minimum amount being one PRU which may include a short or zero-length PRU. When a 
system-logical-record is to be replaced with a record of the same length in a single rewirte operation, RE­
WRITER should be used. A longer record may require REWRITE and REWRITER, depending on the buffer 
size. 

When ·the new record is not the size of the original record, the resulting fIle may have spurious records. Short 
replacement records, where the original record .was contained in a single PRU, or the replacement record 
extends into the last PRU of the original record, do not cause difficulties. When the new record occupies 
fewer PRUs than the original, however, the end of the original record remains in the file. As an example con­
sider an original 120-word record occupying a full PRU of 64 words and extending 56 words into a second 
PRU. Replacing the record with 60 words produces a short PRU in place of 64 words or original data. The 
56 words of the second PRU of the original record remain in the fIle, since mass storage allocation never is 
changed by a rewrite. 

A similar condition is created when the replacement record extends beyond the PRU's of the original record. 
Since the beginning of the next record in the file is overwritten, its usefulness is destroyed, but the remainder 
of the record still resides in the ftIe. 

When REWRITEF is issued, a zero-length PRU containing a level 17 is written. If issued when the file is 
positioned at any point, two level 17 indicators will exist on the file. 

When random files are being rewritten, the methods of writing and the results of under-writing or over-writing 
a logical record are the same as for sequential fIles. Index integrity can be destroyed by rewriting records of 
different lengths. The user must position the file properly before each record is rewritten. Otherwise, writing 
takes place at the current position. Subsequent rewriting operations rewrites the next record in the fIle, 
which is not necessarily the next index entry for the file. 

To position a random ftIe for rewriting, the user may use one of two methods: 

Set up the FET the same as for a random read and insert the record address found by searching 
the file index into the record request/return field in the seventh word of the FET. 

For an indexed file with records identified by name or number, use the WRITIN function, which 
causes the system to search the user's index and set-the necessary FET fields. 

Once the file is positioned to the beginning of a record, a REWRITE and REWRITER sequence or a WRITIN 
and REWRITER sequence can be executed without further repositioning. The record request/return field in 
the FET will be cleared by the first REWRITE or REWRITER that is issued by the calling program or 
WRITIN, and remain cleared until repositioning for another record is required. 

The rewrite functions generate the following code: 

59 47 41 39 29 17 13 o 

SAl Ifn RJ CPC 

-

y o r lev z 

60493800 C 7-59 I 



The y and z fields depend on the specific function. The value of y is: 

002 for REWRITE 
003 for REWRITER or REWRITEF 

The value of z is: 

214 for REWRITE 
224 for REWRITER 
234 for REWRITEF 

WRITIN MACRO 

The WRITIN function applicable to mass storage files is a rewrite-in-place function similar to the rewrites. 
It assumes the user has full knowledge of file structure and knows the results of his actions, as explained 
with the rewrite functions. 

WRITIN is similar to WRITOUT in that it relieves the user of the responsibility of manipulating buffer 
pointers when a working storage area is provided. When the circular buffer has been filled from the 
working storage area, WRITIN issues a REWRITE. Handling of binary and coded data is the same as for a 
WRITOUT. Parameters for WRITIN, and results of its use, are the same as for WRITOUT. 

WRITIN Ifn 

WRITIN lfn,/name/ 

WRITIN lfn,n 

REWRITER is required to terminate a record, except when WRITIN or WRITOUT names another indexed 
record. In this case a REWRITER of level 0 is forced before the new record is begun. 

If a working storage area does not exist when WRITIN is issued to a random or sequential file, the function 
is ignored with no error indication. For an indexed ftle without a working storage area, however, a WRITIN 
specifying a record name or number causes me repositioning to the beginning of that record. Therefore, the 
WRITIN function is useful before REWRITE or REWRITER. 

The code generated by the WRITIN macro depends on the second parameter. For no parameter, a name 
parameter, and a number parameter, respectively, the code is: 

59 29 17 o 

RJ IOREWRT 

Ifn 

I 7-60 60493800 C 



59 29 17 o 

RJ IORRW 

Ifn 

name 

59 29 17 00 

RJ IORRW 

Ifn 

n 

POSITIONING FUNCTIONS 

Files can be repositioned forward with the SKIPP function, or repositioned in a reverse direction with BKSP, 
BKSPRU, REWIND, SKIPB, and UNLOAD. Any of these commands can be issued at any point in a logical 
record. If parity -errors occur during repositioning, they are ignored. 

SKIPF Skips records forward 

SKIPB Skips records backward 

BKSP Skips back single record 

BKSPRU Skips back single physical record unit 

REWIND Skips back to beginning-of-information 

UNLOAD Skips back to beginning-of-information and unloads 

Reverse functions other than REWIND stop at the beginning of the current volume of magnetic tape. No 
status returned to the PET indicates that beginning-of-volume has been detected before the requested number 
of backspaces was completed. However, if the XP bit (bit 40 of word 2) is set, the number of skips yet to 
be made will be stored in the RSC field (bits 24-41) of the FET extension. 

If a magnetic me is positioned immediately after a newly written record when a reverse motion function is 
issued, trailer label procedures are executed before the function is performed. Four tape marks are written 
if a trailer label format is not defined. 

60493800 C 7-61 I 



SKIPF MACRO 

SKIPP causes one or more system-logical-records, or physical records of an S or L tape, to be bypassed in a 
forward direction. 

SKIPF lfn,n,lev,recall 

The number of records or record groups to be skipped is specified by the n parameter; the value 1 is assumed 
if n is absent. The maximum octal value of n is 777776. If n is 777777 and the file is on magnetic tape, it 
is not repositioned. If n is 777777 and the file is on mass storage, it is positioned at end-of-information. If 
the CIO call is used instead of the CPC call, whenever n=O it is treated as if n=l was given. 

For mass storage and SI tapes, the skip count is incremented as each level defined by the lev parameter is 
passed. Thus, a SKIPF with a count of 1 and lev of 0 issued in the middle of a record positions the file to 
the beginning of the following record. 

The lev parameter specifies the level defining the record end; logical records are skipped until an end-of-Iogical 
record with a level number greater than or equal to the requested level is reached. The file is positioned 
immediately following this end-of-Iogical-record mark. 

If lev is absent, this field is set to zero, and the file is positioned forward n logical records or parts of records. 
If end-of-information is encountered before an -end-of-Iogical-record with the specified level is found, the end­
of-information status bit will be set in the FET. 

Although level numbers do not exist on Sand L data format tapes, an lev parameter may be specified for 
SKIPF requests. If level number 17 is specified, a skip to end-of-partition is performed. Any other level 
number is assumed to be zero, and one record is skipped. 

A SKIPF is continued across volumes when the user processing (UP) bit is O. If UP is set, the forward skip 
stops when end-of-volume is detected. If both UP and XP are set when end-of-volume appears before the 
skip count is fulfilled, the difference between the count requested and count made to that point will be 
returned to the RSC field in the· FET extension. 

The SKIPF macro generates the following code: 

59 . 47 41 39 29 17 13 00 

SAl Ifn RJ CPC 

000003 Or n lev 000240 

SKIPB MACRO 

SKIPB causes one or more system-logical-records, or physical records of Sand L tapes, to be bypassed in a 
reverse direction. 

SKlPB lfn,n,lev,recall 

, 7-62 60493800 C 

I 

\ 

( 
\ 

! 
\ 

( 



The number of records or logical record groups to be skipped is specified by the n parameter; the value is 
assumed if n is absent. When n is the maximum value of 777777 (octal), the file is rewound. 

For mass storage and SI tapes, if the level parameter is used, logical records are read backwards until a short 
PRU containing the specified level has been read. A forward read is issued, leaving the file positioned after 
this short PRU. If the file is positioned initially between logical records, the level number immediately pre­
ceding tL'1e current position is ignored in searching for a record of the specified level. This positioning process 
is performed n times. 

Consecutive system-logical-records within a file may be organized into a group by using level number. The file 
is composed of one or more groups of logical records. This may be done by choosing a minimum level num­
ber other than 0, assigning a larger or equal level number to the last logical record of each group, and assign­
ing a smaller level number to all other logical records. Then SKIPB lfn"lev skips the file backward to the 
beginning of the logical record group which immediately follows a logical record of level lev. 

If the level parameter is absent, this field is set to zero, and the file is positioned backward n logical records 
(or partial logical records if the SKlPB is issued in the middle of a logical record). 

If the beginning of a volume is encountered on mass storage and the UP bit is set, or if the beginning of a 
volume on magnetic tape is encountered before the requested level number is found, the request terminates 
with no indication. However, if XP is set, field RSC in the FET extension contains the count n still required 
to complete the operation. Parity errors encountered during a SKlPB operation are ignored. 

For Sand L tapes, only levels 0 and 17 are recognized; any other level specified is assumed O. 

The SKIPB macro generates the following code: 

59 47 41 39 35 29 17 13 

SAl Ifn RJ CPC 

000003 Or n lev 000640 

BKSP MACRO 

BKSP causes one system-logical-record to be bypassed in a reverse direction. This function is a subset of 
SKIPB; it is included for compatibility with previous systems. 

BKSP lfn,recall 

The BKSP macro generates the following code: 

59 47 41 39 29 17 

SAl Ifn RJ CPC 

000003 Or 000040 

60493800 C 

o 

o 

7-63 I 



BKSPRU MACRO 

BKSPRtJ causes one or more physical record units to be bypassed in a reverse direction. 

BKSPRU lfn,n,recall 

The number of PRU's to be bypassed is indicated by n. If n does not appear, one PRU is skipped. 

The BKSPRU macro generates the following code: 

59 47 41 39 35 29 17 o 

SAl Ifn RJ CPC 

000003 Or n 000044 

REWIND MACRO 

REWIND positions a rue to beginning-of-information. A REWIND iss~ed for a file already rewound has no 
effect. A REWIND request for a me on a device that cannot be rewound causes a 22 status indicating an 
illegal functiQn to be returned to the FET. 

REWIND lfn,recall 

Labeled tapes are positioned to beginning-of-information ahead of the label group. Subsequent forward motion 
requests result in the label being skipped before the tape is read or written. 

For unlabeled multi-volume tapes, a REWIND causes the current volume to be rewound. For labeled multi­
volume, single-me tapes, a REWIND causes the current volume to be rewound and the volume number in the 
system tables to be set to 1. A subsequent forward motion causes the label to be read and compared with 
the system tables, and the operator is notified if the current volume is not number 1. 

For multi-me labeled tapes, a REWIND issued for a me causes positioning to the beginning of that file. If 
necessary, the operator is instructed to mount the previous volume. A REWIND that references a multi-me 
name is illegal; the job terminates. 

The REWIND macro generates the following code: 

59 47 41 39 29 17 o 

SAl Ifn RJ CPC 

000003 o r 000050 

I 7-64 60493800 C 



UNLOAD MACRO 

UNLOAD operates in a manner similar to REWIND, except that it only affects the current volume of tape. 
UNLOAD cannot override an IU inhibit unload parameter on a REQUEST control statement. Otherwise, a 
tape file is rewound and unloaded. 

UNLOAD lfn,recall 

The UNLOAD macro generates the following code: 

59 47 41 39 29 17 o 

SA1 Ifn RJ CPC 

000003 Or 000060 

FILE DISPOSITION 

Files can be disposed of in several ways in addition to the disposition associated with special file names. 

The file can be destroyed by the EVICT function. 

The file can be routed to an output device at the central site or a remote terminal station with the 
ROUTE or DISPOSE functions. 

Files on public devtc-e sets that have not been named in a ROUTE or DISPOSE control statement or macro, 
or have not been equated to standard output flle names such as OUTPUT or PUNCH, disappear upon job 
termination. Permanent files, of course, are retained under permanent file manager disposition. 

It is not possible to dispose of a file by setting a disposition code directly in the FET. 

EVICT MACRO 

The EVICT function declares that contents of file lfn are to be discarded. 

EVICT lfn,recall 

When a file on a public device set is evicted, all space occupied by that file is released to the system. The 
space immediately becomes available for any system purpose or reassignment. An EVICT function directed to 
a permanent file is ignored; a dayfile message is issued and the job continues normally. 

When a flle on a magnetic tape is evicted, the tape is rewound and set to new status, thus declaring that the 
data and label are no longer valid and cannot be read by the job. If the me was declared to be labeled a 
new header label is written on any subsequent file reference. However, the evicted file is not overwritten 
without operator authorization if the file expiration date has not passed. 

60493800 C 7- 65 I 
'( --''' .• 

\-j 



If an EVICT function is directed to a member of a multi-fIle set, the set already must have been positioned 
at that file. Eviction of a member file also implies eviction of all fIles occupying higher numbered positions. 

The logical file name used in the EVICT function is retained and cannot be used for a file on another device. 

EVICT is undefined and, therefore, illegal on unit record equipment. A fatal error results if it is tried. 

The EVICT macro generates the following code: 

59 47 41 39 29 17 o 

SA1 Ifn RJ CPC 

000003 Or 000114 

DISPOSE MACRO 

, With the dispose function, a central processor program may declare a disposition code and initiate termination 
processing for a file. Files either can be released or sent to the output queue of completed fIles, as explained 
with the DISPOSE control statement. The dispose function can be used only -for fIles that are resident on 
queue devices. 

DISPOSE lfn, *x=ky ,recall 

lfn ,. Logical file name 

* Optional ehd-of-job disposition indicator 

x Two-character disposition mnemonic. 

Mnemonic 

PR 
P2 
LR 
LS 
LT 
PB 
PU 
P8 
FRt 
FLt 
PTt 
HRt 
HLt 

Defmition 

Print on any available printer 
Print on 512 printer 
Print on 580-12 printer 
Print on 580-16 printer 
Print on 580-20 printer 
Punch standard binary format 
Punch Hollerith format 
Punch free-form binary format 
Print on microfilm recorder 
Plot on microfllm recorder 
Plot 
Print on hardcopy device 
Plot on hardcopy device 

t Supporting drivers must be supplied .by the installation. 

I . 7-66 60493800 C 



k 

y 

Optional site indicator; y must follow 

C 
I 

Central site 
INTERCOM terminal 

Qualifier to k; y cannot be used without k 

If k is C, two-character alphanumeric installation defined identifier of special forms or 
paper 

If k is 1, two-character user identification 

recall Optional character indicating recall 

If only lfn is given, the file is released, with mass storage and table references being removed. 

The code generated by the DISPOSE macro is: 

59 47 41 39 29 23 15 11 o 

EQ *+2 

Ifn 

The following is set in X6 with a subsequent call to SYS=. 

z 

kk 

DSP 

1+1 
set to 1 when * is used 

site indicator 

00 
01 
10 

none 
central site 
INTERCOM terminal 

Y 

z kk 1 

The completion bit (C) is set to 1 by DSP when the requested function is complete. 

ROUTE MACRO 

c 

x 

The ROUTE macro places a file in an. input or output queue, evicts a file, or specifies attributes the file has 
when it is placed in an output queue. ROUTE has all the capabilities of DISPOSE. See the ROUTE control 
statement for a complete description of the ROUTE capabilities. The user must construct a parameter list in 
the format described below before calling the ROUTE macro. The file being processed must not be the 
INPUT file, but it must be resident on a queue device. 

60493800 C 7-67 I 



I 

ROUTE tag,recall 

tag Address of the ROUTE parameter list 

recall Optional non-blank character indicating auto recall 

Parameter List Format: 

tag 

tag+1 

tag+2 

tag+3 

tag+4 

Word 

tag 

tag+l 

7-68 

59 47 41 35 23 19 17 13 11 o 

Logical File Name 
Error 

Unused ~ Code 

Forms Codel Disposition E I 
Flags 0000 INPUT Flags Code C C 

Reserved 
Station 10-

Unused TID 
Destination 

Spacing 
Code 
(Output 
Only) 

Bits 

18-59 

12-17 

File Identifier (FlO) Unused B Priority 

Field 

Logical File 
Name 

Error Code 

Reserved Repeat Unused 
Count 

Description 

lfn of file to be routed: must be mass storage me, not a 
permanent file, cannot reside on a dismountable device, must 
have at least read permission. 

Code returned by system when bit 12 of Flag field is set, as 
noted below. 

1-11 Unused 

o 

48-59 

36-47 

A 

Zeros 

Forms Code/ 
Input Flags 

Complete bit. Must be zero when macro is issued; system 
sets to one when function is complete. 

Twelve bits of zero. Allows compatibility with previous 
callers of DSP. The old calling sequence put the lfn in tag+ 1. 

Two display code letters or digits identifying forms to be used 
for this file. Default is standard forms. If the file is to' be 
routed to an input queue, this field is defined as: 

Bit 

47 
46 
45 

Definition 

Unused 
Unused 
Do not catalog INPUT file 

60493800 C 



Word Bits Field Description 

tag+l Bit Derwtion 

44 Reserved for use by system jobs 
43 SendTtle to input queue even if job statement error 
42 Use dependency count 
36-41 Dependency count 

24-35 Disposition Disposition Code mnemonic in display code. 
Code 

21-23 EC External characteristics code translate<t as follows: 

Value 
(octal) Print Fie Punch Fie 

0 EC (default) EC (default) 
1 EC=SB 
2 EC=80COL 
3 EC=B4 
4 EC=B6 EC=026 
5 EC=A6 EC=029 
6 ~EC=A9 EC=ASCII 
7 Reserved for installations 

20 Unused 

18-1_2 IC Internal charact~ristic code translated as follows: 

Value 
. (octal) Meaning 

0 IC or IC=DIS - Display Code (default) 
1 IC=ASCII 
2 IC=BIN binary 
3 Reserved 

0-17 Flag Bits Indicate specified parameters: 

Bit Meaning 

17 File name assigned by system is returned at tag 
word bit 18-59 

I 16 Unused 
15 Spacing code 
14 Repeat count 
13 Reserved· for system job 
12 No dayftle message; return error code in bits 

12-17 of first-word of parameter list 
11 Reserved for system jobs 
10 Forms code 
9 Priority 

60493800 C 7-69 



I 

Word 

tag+l 

tag+2 

tag+3 

tag+4 

Bits 

42-59 

24-41 

12-23 

0-11 

18-59 

13-17 

12 

0-11 

18-59 

54-59 

17 

12-16 

0-11 

Field 

Reserved 

Station ID-
Destination 

Unused 

TID 

FID 

Unused 

B 

Priority 

Reserved 

Spacing Code (SC) 

Unused 

Repeat count 

Unused 

Description 

Bit ~eanjng 

8 Internal characteristics 
7 External characteristics 
6 FID=* System appends two unique sequence 

characters to ftIe identifier 
5 FID - System uses FID specified in tag+ 3, bits 18 -59 
4 Disposition code 
3 Route to remote station 
2 TID is specified. 
1 Route to central site. 
o End-of-job (deferred ROUTE) 

Used by system jobs; otherwise, set to binary zero. 

Display code destination ID. The me is processed by the 
system with this logical identifier. 

Display code identifier of INTERCOM terminal to receive 
the me. 

If the calling job was not loaded completely from the system 
library, only a maximum of 5 characters may be used to 
specify FID. The additional 2-character sequence number is 
determined by flag bits 5 and 6. Seven characters may be 
specified by calling jobs loaded completely from the system 
library. 

Use the priority in bits 0-11. 

Priority for an interactively routed output ftle being routed ~o 
the routing terminal. 

For use by system jobs only. 

580 PFC Printer. Spacing array to be loaded with the ftIe 
(output only). 

Repeat count. 

When an error occurs in processing a ROUTE macro, either a dayftle message explaining the error is issued, or 
an error code is returned in bits 12-17 of the first word in the parameter list.· If bit 12 of the flag field is 
set, an error code is returned and no dayfile message is issued. If bit 12 is not set, a dayftle message is issued 
and no error code is returned. If the address of the parameter list is outside the field length of the job or if 
the complete bit is set when the macro is issued, the job aborts. For all other errors, the ROUTE macro is 
not executed but processing continues. 

7-70 60493800 C 



When a diagnostic is issued for the ROUTE macro, the message ERROR IN ROUTE FUNCTION LFN= is 
issued before the message describing the error. If· the function completes successfully, no message is issued; 
the error code field is set to binary zero. 

Error Code 
(octal) 

01 

02 

03 

04 

05 

06 

07 

10 

11 

12 

13 

15 

16 

17 

20 

21 

22 

23 

24 

25 

26 

Message 

INVALID LFN - DSP 

CANT ROUTE NON ALLOCATABLE EQP 

CANT ROUTE PERM FILE 

NO PERMISSION TO ROUTE THIS FILE 

ROUTE TO INPUT NOT IMMEDIATE - IGNORED 

IMMEDIATE ROUTING - NO FILE - IGNORED 

INVALID DISPOSITION CODE - ROUTING IGNORED 

INVALID FID - ROUTING IGNORED 

DSP ABORTED BY SYSTEM 

DSP PARAMETER OUTSIDE FL 

PRIORITY SPECIFICATION IGNORED 

E1200 SPECIFIED - INTERCOM USED (DSP) 

CAN NOT ROUTE INPUT FILE 

DSP COMPLETE BIT ALREADY SET 

FILE ON DISMOUNTABLE DEVICE - ROUTING IGNORED 

TID NOT ALPHANUMERIC - ROUTING IGNORED 

FORMS CODE NOT ALPHANUMERIC - ROUTING IGNORED 

INVALID LINK TYPE - ROUTING IGNORED (DSP) 

FILE NOT ON QUEUE DEVICE - ROUTE IGNORED 

PRE-DAYFILE LFN AND NO DC=IN - ROUTE IGNORED 

PRE-DAYFILE FILE NOT FOUND - ROUTE IGNORED 

See·the Diagnostic Handbook for a description of each message. 

60493800 C 7-71 I 



PERMANENT FILE FUNCTIONS 

Permanent file functions are those defined by control statements with the following names: 

ALTER 
ATTACH 
CATALOG 

EXTEND 
PURGE 
RENAME 

Information applicable to a control statement call is also applicable to a call through a permanent file macro. 
In addition, an FDB and PERM macro are available. 

Each permanent file macro expansion contains an RA+l call to a permanent fIle program. Parameters 
necessary for execution of a function are contained in the fIle definition block (FDB) table within the user's 
field length. 

FOB MACRO 

The macro for generating an FDB has the format: 

fdbaddr FDB lfn,pfn,parameter list 

fdbaddr is th~ symbol to be associated with the word in the FDB that contains the Ifn; it must be present in 
the location field. Parameters are separated by commas and terminated by a blank. They may include any 
of those indicated by the two-letter codes described for control statements. 

The field to the right of the macro name. FDB, is identical to that which could be on a control statement. 
Parameters are entered into the FDB as they are encountered in the list. The FDB is generated in-line during 
assembly whenever the macro is called. 

A user specifies the intent of a particular function by specifying parameters. If they do not clearly define the 
function request, the permanent file manager attempts to inform the user of the unknown information by the 
following means: 

I 7-72 

Modification of the File Defmition Block will be done when an illegal parameter is correctable. For 
example, if an incorrect cycle number is encountered on a CATALOG function, the actual cycle 
number is returned in the FOB. If code is not successful, error codes may be returned in the FOB. 

A job dayftle message is issued to the job dayftle unless the RT or RC parameter is specified in the 
function call that specifies the FDB. 

60493800 C 



The FDB generated by the macro has the form: 

59 17 11 8 5 o 
o 

J. Permanent File Name 4.., 
(Display Code left Justified Zero Filled) 

2 

3 

fdbaddr Ifn (left Justified Zero Filled) 
Return 
Code 

status 4 

Parameter Value (Right Justified Zero Filled) t k(l ) 5 

Parameter Value (Right Justified Zero Filled) k(2) 6 

· · "''7 · ~ 
Parameter Value (Right Justified Zero Filled) k(n) 4+n 

Blank 0000 7 

t The SN parameter value is left justified, zero-filled 

Field Description 

k(n) Parameter identifier in octal. or display code I 

Value Keyword 
(Octal) Parameter Description 

00 End of FDB list 
02 RP Retention period days 
03 CY Cycle number 
04 TK Turnkey password (display code) 
05 DN Control password (display code) 
06 MD Modify password (display code) 
07 EX Extend password (display code) 
10 RD Read password (display code) 
11 MR Multi-read parameter 
13 XR Control, Modify, Extend password (display code) 
14 ID Owner identification (display code) 
16 AC Account (display code) 
17 EC ECS Buffering (display code) 

20 } 
24 PW Password submitted (display code) 

25 FO File organization (display code) 
31 LC Lowest cycle 

7-73 

60493800 C 



Field 

Status 

Return 
Code 

I 7-74 

Description 

Value Keyword 
(Octal) Parameter Description 

32 ST Station ID (display code) 
33 RW Multi-read with single rewrite 
40 SN Setname (display code, left justified) 
41 Reserved for VSN parameter 
43 RB PURGE RB conflict parameter 

Status bits 

Bit Meaning 

0 Complete bit 
1 Unused 
2-5 Function code bits 

0010 ATTACH 1010 RENAME 
0100 CATALOG 1100 PERM 
OlIO EXTEND 0111 ALTER 
1000 PURGE 

6 Set if RC or RT not specified. Issue dayfile messages. All errors are fatal. 
7 Set if RT specified 
8 Set if NR specified 

Return codes 

Value 
(Octal) 

000 
001 
002 
003 
004 
005 
006 
010 
011 
012 

013 
015 
016 
017 
020 
022 
023 
024 

Meaning 

Function Successful 
PFN/ID error 
lfn already in use 
Unknown lfn 
No room for extra cycle (limit is five) 
Permanent file catalog full 
No lfn or pfn 
Latest index not written 
Fila. not on PF device 
File not cataloged, SN=xxxxxxx (xxxxxxx is the set name of the device set 
searched) 
Archive retrieval aborted 
Cycle number limit reached 
Permanent File Directory full 
Function attempted on non-permanent file 
Function attempted on non-local-file 
File never assigned to a device 
Cycle incomplete 
PF already attached 

60493800 C 



Field Description 

Value 
(Octal) 

025 
027 
030 
031 

033 
035 
040 
041 
042 
043 
070 
071 
072 
073 
074 

Meaning 

File unavailable 
Illegal Ifn 
File dumped 
Illegal fU!1ction code 

ALTER needs exclusive access 
File already in system 
Dlegal setname specified 
Device set not mounted at control point 
RBT chain too large for PFC 
File resides on unavailable device 
PFM stopped by system 
Incorrect permission 
File Definition Block address invalid (not returned to FDB) 
I/O error on PFD/PFC rewrite 
ST parameter illegal with private device set 

On control statement requests, all errors are fatal; on macro requests, unless the RC parameter is specified, the 
job is terminated. Any job that attempts a privacy breach is terminated. Codes greater than 70 octal are fatal. 
All internal permanent file malfunctions are system errors that cause job termination. 

FUNCTION MACROS 

The macro function call is of the following form: 

function fdbaddr,RC,RT,NR 

function Any permanent file function, such as CATALOG. 

fdbaddr Symbol on FDB macro. 

RC Optional parameter that causes return codes to be available in FDB. 

RT Optional parameter that inhibits any permanent file queueing. 

NR Optional parameter that inhibits auto recall. 

All permanent me macro calls are issued with auto recall unless NR is present. In this case, it is possible for 
the central processor program to test the completion bit in the FDB· to determine whether the function has 
completed. 

The RT parameter can be used only at the macro level, unless the user constructs the FDB himself. Jobs 
attempting permanent file attaches queue for the requested file if the RT parameter is not specified when: 

File is unavailable Gob requesting file wants exclusive access, or job using the me has exclusive access). 

Attached permanent file table is full. 

60493800 C 7-75 



Archived me (a permanent file stored on tape rather than mass storage) is temporarily unavailable. ATTACH 
will set up a LOADPF job to be scheduled. The job requesting the' attach will be swapped out until the 
me is available. 

When EXTEND is used on an indexed file, the current index must be rewritten, at the end of the file, by 
the user to invalidate any prior index. This must be done prior to the EXTEND function. When an 
EXTEND function is requested for a random file, nothing must have been written on the file since the 
index was last written. 

PERM MACRO 

PERM, available only as a system macro, allows a running program to determine what permissions have been 
granted to a file and whether or not the me is permanent. The macro format is: 

PERM fdbaddr ,RC,NR 

The only required parameter is the lfn, which should be supplied in the FDB. This Ifn should reference a me 
available to the job calling PERM. 

The S-bit code is returned to the user as the return code in the FDB (bits 9-13 in fdbaddr). The rightmost 4 
bits are the permission bits. The octal codes are: 

10 CONTROL 
04 MODIFY 
02 EXTEND 
01 READ 

The leftmost bit of the S-bit code is a flag. If it is 0, the lfn references an attached permanent file unless 
the entire S-bit code is equal to O. If the entire code is· 0, the lfn is unknown to the job calling PERM 
since a permanent me cannot be attached without permissions. A 1 in the leftmost bit indicates a local file. 

SYSTEM TEXTS 

System texts provide commonly used macro, micro, and symbol definitions for use in COMPASS source 
programs. NOS/BE 1 provides several system text overlays, which are loaded by COMPASS from the system 
libraries when specified by S or G parameters on the COMPASS control statement. S or G parameters can 
also be used on FTN control statements when FORTRAN Extended source programs contain intermixed 
COMPASS subprograms. Up to seven system texts can be specified, each by a different S or G parameter, 
for a given assembler run. Most system texts are made up of UPDATE common decks described below. 
System texts are constructed as part of the installation process described in the Installation Handbook. 

I 7-76 60493800C 



COMMON DECKS 

ACTCOM-CPU System Action Request Macros: 

IXi Xj/Xk 
IXi Xj/Xk,Bn 
ABORT 
ACQUIRE 
CHECKPT 
CLOCK 

CONTRLC 
DATE 
DISPOSE 
ENDRUN 
FILESTAT 
FILINFO 

GETJCI 
IOTIME 
JDATE 
'LOADREQ 
MEMORY 
MESSAGE 

RECALL 
RECOVR 
REQUEST 
ROUTE 
RTIME 
SETJCI 

STATUS 
SYSCOM 
SYSTEM 
TIME 
TRANSF 
VERIFYJ 

CIOCOM - Codes, symbols, macros and installation parameters associated with magnetic tape processing and 
tape scheduling. 

CMRDEF - Symbols, macros and installation parameters for Monitor and the integrated scheduler. 

COMACIO - CPU Input/Output Macros. 

COMAFET - File Environment Table Generation Macros: 

FILEB 
FILEC 

LABEL RFILEB 
RFILEC 

COMAREG - Replacement for R= pseudo-instruction 

COMSRAS - System Communication Symbols: 

Contains definitions of the system communications symbols described in this section under the heading 
SYSTEM MACRO. 

CPSYS - Input/Output Macros using CPC: 

BKSP READC REWRITEF WRITE 
BKSPRU READIN REWRITER WRITEC 
CLOSE READN RPHR WRITEN 
CLOSER READNS SKIPB WRITEF 
EVICT READSKP SKIPF WRITER 
OPEN REWIND UNLOAD WRITIN 
POSMF REWRITE WPHR WRITOUT 
READ 

ECSCOM - ECS and ECS link installation parameters; ECS flag register function macros. 

ECSDEF - Codes, macros, symbol definitions and storage descriptors for ECS processing and the ECS Link. 

IPARAMS - Installation Parameters: 

Contains installation parameters as symbol and micro definitions. 

LMACOM - Loader Request Macros: 

Contains two macros: LOADER and LDREQ. 

60493800 C 7-77 

I 



PFCOM - Permanent File Macros: 

ALTER 
ATTACH 
CATAWG 

EXTEND 
FDB 
PERM 

PPSYS - Peripheral Processor System Defmitions: 

PURGE 
RENAME 

Contains· many system symbols and micros, and the following macros: 

ADK 
BIT 
CEQU 
CMICRO 

CRI 
ENM 
JOBCARD 
LDCA 

SCHCOM - Integrated Scheduler Macros: 

CISO 
ENTRY34 
LDW 

SCHLOK 
SCHSAVE 

SISICOM - SCOPE Indexed Sequential Macros: 

ACCESSK 
ACCESSN 
DELETE 
FORCEW 
INSERT 
OPENNEW 

OPENOLD 
REPLACE 
REPOS 
SEEKL 
SEEKS 
SETBLKD 

STATCOM - Station Interface Definitions: 

LDK 
PPENTRY 
SBK 
UJK 

SCHSTOR 
STREQ 

SETBLKI 
SETCOLL 
SETERR 
SETFET 
SETKEY 
TERMNAT 

GETPF 
SAVEPF 

Contains -definition of interface to the station control point and definition of codes used in message 
requests. 

6RMCOM - CYBER Record Manager Definitions: 

Contains macro, micro, and symbol definitions for user programs that use CYBER Record Manager. 

SSYS - System Control Point macros and definitions. 

TEXT OVERLAYS 

The system· text overlays contain various combinations of the common decks, as shown below. When the 
multimainframe module is present and IP.SRMS=l, an additional system text, SRMSTXT, is cataloged. 

I 7-78 60493800C 



CMRTEXT 

CPCTEXT 

CPUTEXT 

10TEXT 

IPTEXT 

LDRTEXT 

PFMTEXT 

PPTEXT 

SCHTEXT 

SCPTEXT 

SDDTEXT 

SSYTEXT 

STATEXT 

SYSTEXT 

SRMSTXT 

60493800 C 

System text for assembling Central Memory Resident segments separately from CMR. 

Common decks IPARAMS, SSYS, ECS COM, CIOCOM, CMRDEF, and ECS DEF. 

System text for central processor programs using CPC. 

Common decks ACTCOM, COMAFET, COMSRAS, CPSYS, and SISICOM. 

System text containing all system macros, micros, and symbols for COMPASS CPU pro­
grams that use the CIO= . communication routine for I/O and run under the CYBER 
operating system. 

Common decks ACTCOM, COMACIO, COMAFET, COMAREG, and COMSRAS. 

System text for central processor programs using CYBER Record Manager. 

Common decks ACTCOM, COMSRAS, and 6RMCOM. 

Installation parameter system text. 

Contains a single macro, IPARAMS, whose body is the IPARAMS common deck. 

System text for central processor programs using CYBER Loader. 

Common deck LMACOM. 

System text for central processor programs using permanent files. 

Common deck PFCOM. 

System text for peripheral processor programs. 

Common decks COMSRAS and PPSYS. 

System text for central and peripheral processor programs interfacing with the integrated 
scheduler. 

Common deck SCHCOM. 

System text for central and peripheral processor programs in the operating system. 

Common decks ACTCOM, COMAFET, COMSRAS, CPSYS, and PPSYS. 

System text containing two macros, PPUDMP and CIDD, that provide the interface 
between PP programs and the dynamic dump feature. 

System text for System Control Point subsystem programs. 

Common deck SSYS. 

System text of station interface definition for DSD and INTERCOM. 

Common deck STATCOM. 

System text for central processor programs. 

This is the default system text used by COMPASS when no S or G parameters are 
specified. It can be identical to either CPCTEXT or 10TEXT, at installation option. In 
the released system, SYSTEXT is equal to 10TEXT. 

Cataloged as an additional system text when multi-mainframe shared RMS is installed. 

7-79 



The following additional system texts are provided by product set members. 

ALGTEXT 

FTNMAC 

SMTEXT 

RMERTXT 

I 7-80 

Contains COMPASS coded macros used to expand application areas of ALGOL. 

Contains macros used by COMPASS object programs produced by the FORTRAN Extended 
compiler (FTN). 

Contains macros for central processor programs that call Sort/Merge. 

Contains CYBER Record Manager error dictionary. 

60493800 C 



STANDARD CHARACTER SETS A 

CONTROL DATA operating systems offer ~e following variations of a basic character set: 

CDC 64-character set 

CDC 63-character set 

ASCII 64-character set 

ASCII 63-character set 

The set in use at a particular installation was specified when the operating system was installed. 

Depending on another installation option, the system assumes an input deck has been punched either in 026 
or in 029 mode (regardless of the character set in use). Under NOS/BE 1, the alternate mode can be speci­
fied by a 26 or 29 punched in columns 79 and 80 of the job statement or any 7/8/9 card. The specified 
mode remains in effect through the end of the job unless it is reset by specification of the alternate mode on 
a subsequent 7/8/9 card. 

Graphic character representation appearing at a terminal or printer depends on the installation character set 
and the terminal type. Characters shown in the CDC Graphic column of the standard character set table are 
applicable to BCD terminals; ASCII graphic characters are applicable to ASCII-CRT and ASCII-TTY terminals. 

60493800 A A-I 



:r 
tv 

0\ 

~ 
\0 
W 
00 o o 
>-

STANDARD CHARACTER SETS 

ASCII Hollerith External ASCII 'ASCII Hollerith External ASCII 

CDC Graphic Display Punch BCD Punch ASCII CDC Graphic Display Punch BCD Punch ASCII 

Graphic Subset Code (026) Code (029) Code Graphic Subset Code (026) Code (029) Code 

:t OOtt 8-2 00 8-2 072 6 6 41 6 06 6 066 
A A 01 12-1 61 12-1 101 7 7 42 7 07 7 067 
B B 02 12-2 62 12-2 102 8 8 43 8 10 8 070 
C C 03 12-3 63 12-3 103 9 9 44 9 11 9 071 
D D 04 12-4 64 12-4 104 + + 45 12 60 12-8-6 053 
E E 05 '12-5 65 12-5 105 - - 46 11 40 11 055 
F F 06 12-6 66 12-6 106 * * 47 11-8-4 54 11-8-4 052 

G G 07 12-7 67 12-7 107 / / 50 0-1 21 0-1 057 

H H 10 12-8 70 12-8 110 ( ( 51 0-8-4 34 12-8-5 050 

I I 11 12-9 71 12-9 111 ) ) 52 12-8-4 74 11-8-5 051 

J J 12 11-1 41 11-1 112 $ $ 53 11-8-3 53 11-8-3 044 

K K 13 11-2 42 11-2 113 = = 54 8-3 13 8-6 075 

L L 14 11-3 43 11-3 114 blank blank 55 no punch 20 no punch 040 

M M 15 11-4 44 11-4 115 , (comma) , (comma) 56 0-8-3 33 0-8-3 054 

N N 16 11-5 45 11-5 116 . (period) . (period) 57 12-8-3 73 12-8-3 056 

0 0 17 11-6 46 11-6 117 - # 60 0-8-6 36 8-3 043 
P P 20 11-7 47 11-7 120 r [ 61 8-7 17 12-8-2 133 
Q Q 21 11-8 50 11-8 121 ) ) 62 0-8-2 32 11-8-2 135 

R R 22 11-9 51 11-9 122 % % 63tt 8-6 16 0-8-4 045 

S S 23 0-2 22 0-2 123 =1= " (quote) 64 8-4 14 8-7 042 

T T 24 0-3 23 0-3 124 ~ (underline) 65 0-8-5 35 0-8-5 137 
-

U U 25 0-4 24 0-4 125 v ! 66 11-0 or 52 12-8-7 or 041 

V V 26 0-5 25 0-5 126 11-8-2ttt 11-0ttt 

W W 27 0-6 26 0-6 127 1\ & 67 0-8-7 37 12 046 

X X 30 0-7 27 0-7 130 t I (apostrophe) 70 11-8-5 55 8-5 047 

Y Y 31 0-8 30 0-8 131 {. ? 71 11-8-6 56 0-8-7 077 

Z Z 32 0-9 31 0-9 132 < < 72 12-0 or 72 12-8-4 or 074 

0 0 33 0 12 0 060 12-8-2ttt 12-0ttt 
1 1 34 1 01 1 061 > > 73 11-8-7 57 0-8-6 076 

2 2 35 2 02 2 062 ~ @ 74 8-5 15 8-4 100 

3 3 36 3 03 3 063 ~ \ 75 12-8-5 75 0-8-2 134 

4 4 37 4 04 4 064 -, -(circumflex) 76 12-8-6 76 11-8-7 136 

5 5 40 5 05 5 065 ; (semicolon) ; (semicolon) 77 12-8-7 77 11-8-6 073 

tTwelve or more zero bits at the end of a 60-bit word are interpreted as end-of-line mark rather than two colons. End-of-line 
mark is converted to external BCD 1632. 

ttln installations using a 63-graphic set, display code 00 has no associated graphic or card code; display code 63 is the colon (8-2 punch). 
The % graphic and related card codes do not exist and translations from ASCII/EBCDIC % yield a blank (558 ). 

tttThe alternate Hollerith (026) and ASCII (029) punches are accepted for input only. 
---------- ---



0"1 
o 
~ 
\0 
W 
00 
o o 
:> 

~ v.;) 

AMERICAN NATIONAL STANDARD CODE FOR INFORMATION INTERCHANGE (ASCII) WITH PUNCHED CARD CODES AND EBCDIC TRANSLATION 

lis 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 
b7 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 

= 
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

~ 10 11 12 13 14 15 
b4 bJ ~ b1, 0 1 2 3 4 5 6 7 8 9 IAI IBI ICI 101 lEI IFI ROW 

NUL DLE SP 0 @ P p 
0 0 0 0 0 12-0-9-8-1 12-11-9-8-1 no-punch 0 8-4 11-7 8-1 12-11-7 11-0-9-8-1 12-11-0-9-8-1 12-0-9-1 12-11-9-8 12-11-0-9-6 12-11-8-7 12-11-0-8 12-11-9-8-4 

NUL 00 DLE 10 SP 40 0 FO @7C P D7 79 p 97 DS 20 30 41 58 76 9F B8 DC 

SOH DC1 ! 1 A 0 a q 
0 o 0 1 1 12-9-1 11-9-1 12-8-7 1 12-1 11-8 12-0-1 12-11-8 0-9-1 9-1 12-0-9-2 11-8-1 12-11-0-9-7 11-0-8-1 12-11-0-9 12-11-9-8-5 

SOH 01 DCl 11 I 4F 1 F1 AC1 o D8 a 81 q 98 SOS 21 31 42 59 77 AO B9 DD 

STX OC2 " 2 B R b r 
I 0 0 1 0 2 12-9-2 11-9-2 8-7 2 12-2 11-9 12-0-2 12-11-9 0-9-2 11-9-8-2 12-0-9-3 11-0-9-2 12-11-0-9-8 11-0-8-2 12-11-0-8-2 12-11-9-8-6 

STX 02 DC2 12 " 7F 2 F2 B C2 R D9 b 82 r 99 FS 22 CC 1A 43 62 78 AA BA DE 

ETX DC3 # 3 C S c s -
0 0 1 1 3 12-9-3 11-9-3 8-3 3 12-3 0-2 12-0-3 11-0-2 0-9-3 9-3 12-0-9-4 11-0-9-3 12-0-8-1 11-0-8-3 12-11-0-8-3 12-11-9-8-7 

ETX 03 TM 13 # 7B 3 F3 C C3 S E2 c 83, s A2 23 33 44 63 80 AB BB DF 

EOT DC4 $ 4 D T d t 
0 1 0 0 4 9-7 9-8-4 11-8-3 4 12-4 0-3 12-0-4 11-0-3 0-9-4 9-4 12-0-9-5 11-0-9-4 12-0-8-2 11-0-8-4 12-11-0-8-4 11-0-9-8-2 

EOT 37 DC4 3C $ 5B 4 F4 DC4 T E3 d 84 t A3 BYP 24 PN 34 45 64 8A AC BC EA 

ENO NAK % 5 E U e u 
0 1 0 1 5 0-9-8-5 9-8-5 0-8-4 5 12-5 0-4 12-0-5 11-0-4 11-9-5 9-5 12-0-9-6 11-0-9-5 12-0-8-3 11-0-8-5 12-11-0-8-5 11-0-9-8-3 

ENO 2D NAK 3D % 6C 5 F5 E C5 U E4 e 85 u A4 NL 15 RS 35 46 65 8B AD BD EB 

ACK SYN & 6 F V f v 
0 1 1 0 6 0-9-8-6 9-2 12 6 12-6 0-5 12-0-6 11-0-5 12-9-6 9-6 12-0-9-7 11-0-9-6 12-0-8-4 11-0-8-6 12-11-0-8-6 11-0-9-8-4 

ACK 2E SYN 32 & 50 6 F6 F C6 V E5 f 86 v A5 LC 06 UC 36 47 66 8C AE BE Ii EC 

BEL ETB 7 G W 9 w 
11-0-9-8-5 0 1 1 1 7 0-9-8-7 0-9-6 8-5 7 12-7 0-6 12-0-7 11-0-6 11-9-7 12-9-8 12-0-9-8 11-0-9-7 12-0-8-5 11-0-8-7 12-11-0-8-7 

BEL 2F ETB 26 7D 7 F7 G C7 W E6 9 87 !/II A6 IL 17 GE 08 48 67 80 AF BF ED 

BS CAN I 8 H X h x 
1 0 0 0 8 11-9-6 11-9-8 12-8-5 8 12-8 0-7 12-0-8 11-0-7 0-9-8 9-8 12-8-1 11-0-9-8 12-0-8-6 12-11-0-8-1 12-0-9-8-2 11-0-9-8-6 

BS 16 CAN 18 ( 40 8 F8 H C8 X E7 h 88 x A7 28 38 49 68 8E BO CA EE 

HT EM ) 9 I Y i y 
1 0 0 1 9' 12-9-5 11-9-8-1 11-8-5 9 12-9 0-8 12-0-9 11-0-8 0-9-8-1 9-8-1 12-11-9-1 0-8-1 12-0-8-7 12-11-0-1 12-0-9-8-3 11-0-9-8-7 

HT 05 EM 19 ) 5D 9 F9 1C9 Y E8 i 89 y A8 29 39 51 69 8F B1 CB EF 

10 LF SUB . J Z j z 
1 0 1 0 IAI 

0-9-5 9-8-7 11-8-4 8-2 11-1 0-9 12-11-1 11-0-9 0-9-8-2 9-8-2 12-11-9-:< 12-11-0 12-11-8-1 12-11-0-2 12-0-9-8-4 12-11-0-9-8-2 
LF 25 SUB 3F . 5C : 7A J D1 Z E9 j 91 z A9 SM 2A 3A 52 70 90 B2 J' CC IILVM) FA 

11 VT ESC + 
11-8-6 

K [ k { 
1 0 1 1 (B) 12-9-8-3 0-9-7 12-8-6 11-2 12-8-2 12-11-2 C2

-
O 0-9-8-3 9-8-3 12-11-9-3 12-11-0-9-1 12-11-8-2 12-11-0-3 12-0-9-8-5 12-11-0-9-8-3 

VT OB ESC 27 + 4E ; 5E K02 Ii 4A k 92 CO CU2 2B CU3 3B 53 71 9A B3 CO FB 

FF FS < L \ I I 

1 1 0 0 12 12-9-8-4 11-9-8-4 0-8-3 12-8-4 11-3 0-8-2 12-11-3 1~-11 0-9-8-4 12-9-4 12-11-9-4 12-11-0-9-2 12-11-8-3 12-11-0-4 12-0-9-8-6 12-11-0-9-8-4 
IC) FF OC IFS 1C 6B < 4C L 03 \ EO I 93 6A 2C PF 04 54 72 9B B4 Y CE FC I 

13 CR GS - ; M I m 
}11-0 1 1 0 1 (D) 12-9-8-5 11-9-8-5 11 8-6 11-4 11-8-2 12-11-4 12-9-8-1 11-9-4 12-11-9-5 12-11-0-9-3 12-11-8-4 12-11-0-5 12-0-9-8-7 12-11-0-9-8-5 

CR 00 IGS 10 - 60 ; 7E M04 ! 5A m 94 } DO RLF 09 RES 14 55 73 9C B5 CF FD 

14 SO RS > N ..... n -
1 1 1 0 IE) 12-9-8-6 11-9-8-6 12-8-3 0-8-6 11-5 11-8-7 12-11-5 11-0-1 12-9-8-2 9-8-6 12-11-9-6 12-11-0-9-4 12-11-8-5 12-11-0-6 12-11-9-8-2 12-11-0-9-8-6 

SO OE IRS 1E 4B > 6E N05 .., 5F n 95 - A1 SMM OA 3E 56 74 90 B6 DA FE 

15 
SI us I ? a a DEL EO 

1 1 1 1 12-9-8-7 11-9-8-7 0-1 0-8-7 11-6 0'-8-5 12-11-6 12-9-7 11-9-8-3 11-0-9-1 12-11-9-7 12-11-0-9,-5 12-11-8-6 12-11-0-7 12-11-9-8-3 12-11-0-9-8-7 (F) 
SI OF IUS 1F I 61 ? 6F 006 60 0 96 DEL 07 CU1 1B E1 57 75 9E B7 DB FF -

LEGEND ASCII Character~ I r-I-card Code 

I 11-8-2 
EBCDIC Character_ I 5A~E8COIC Code (Hexadecimal) 

I ' I 



t 
~ 

0\ 

~ 
\0 
W 
00 
o o 
> 

BITS 

4567 

0000 

0001 

001 0 

001 1 

01 00 

01 01 

01 1 0 

01 1 1 

1000 

1001 

101 0 

101 1 

1 100 

1 101 

1 1 1 0 

1111 

LEGEND 

EXTENDED BINARY CODED DECIMAL INTERCHANGE CODE (EBCDIC) WITH PUNCHED CARD CODES AND ASCII TRANSLATION 

0 0 0 0 0 0 0 0 0 1 1 1 

BITS ~ 0 0 0 0 1 1 1 1 0 0 0 
0 0 1 1 0 0 1 1 0 0 1 

3 0 1 0 1 0 1 0 1 0 1 0 
1ST 

A HEX 0 1 2 3 4 5 6 7 8 9 
2ND (101 

NUL OLE OS SP & -
0 12-0-9-8-1 12-11-9-8-1 11-0-9-8-1 12-11-0-9-8-1 no punch 12 11 12-11-0 12-0-8-1 12-11-8-1 11-0-8-1 

1 

2 

3 

4 

5 

6 

7 

8 

9 

A 
1101 

B 
1111 

C 
1121 

0 
1131 

E 
1141 

F 
1151 

NUL 00 OLE 

SOH oCl 
12-9-1 11-9-1 
SOH 01 oCl 

STX OC2 
12-9-2 11-9-2 
STX 02 OC2 

ETX TM 
12-9-3 11-9-3 
ETX 03 OC3 

PF RES 
12-9-4 11-9-4 

9C 

HT NL 
12-9-5 11-9-5 
HT 09 

LC BS 
12-9-6 11-9-6 

86 as 

DEL IL 
12-9-7 11-9-7 
DEL 7F 

GE CAN 
12-9-8 11-9-8 

97 CAN 

RLF EM 
12-9-8-1 11-9-8-1 

80 EM 

SMM CC 
12-9-8-2 11-9-8-2 

8E 

VT CUI 
12-9-8-3 11-9-8-3 
VT OB 
FF IFS 
12-9-8-4 11-9-8-4 
FF OC FS 

CR IGS 
12-9-8-5 11-9-8-5 
CR 00 GS 

SO IRS 
12-9-8-6 11-9-8-6 
SO OE RS 

51 IUS 
12-9-8-7 11-9-8-7 
51 OF US 

EBCDIC Character 

, . 
11-8-'-2 

] 50 

10 

50S 
0-9-1 

11 

FS 
0-9-2 

12 

0-9-3 
13 

BYP 
0-9-4 

90 

LF 
0-9-5 

85 LF 

ETB 
0-9-6 

08 ETB 

ESC 
0-9-7 

87 ESC 

0-9-8 
18 

0-9-8-1 
19 

SM 
0-9-8-2 

92 

CU2 
.0-9-8-3 

8F 

0-9-8-4 
lC 

ENO 
0-9-8-5 

10 ENO 

ACK 
0-9-8-6 

IE ACK 

BEL 
0-9-8-7 

IF BEL 

ASCII 
Character 

ASCII 
Code 

(Hexadecimal) 

80 

9-1 
81 

SYN 
9-2 

82 SYN 

9-3 
83 

PN 
9-4 

84 
RS 
9-5 

OA 

UC 
9-6 

17 
EOT 
9-7 

lB EOT 

9-8 
88 

9-8-1 
89 

9-8-2 
8A 

CU3 
9-8-3 

8B 

0C4 
9-8-4 

8C 0C4 

NAK 
9-8-5 

05 NAK 

9-8-6 
06 

SUB 
9-8-7 

07 SUB 

90 SP 20 & 26 - 20 BA C3 CA 01 

I a j -
12-0-9-1 12-11-9-1 0-1 12-11-0-9-1 12-0-1 12-11-1 11-0-1 

91 AO A91 2F BB a 61 j 6A - 7E 

b k s 
12-0-9-2 12-11-9-2 11-0-9-2 12-11-0-9-2 12-0-2 12-11-2 11-0-2 

16 AI AA B2 BC b 62 k 6B s 73 

c I t 
12-0-9-3 12-11-9-3 11-0-9-3 12-11-0-9-3 12-0-3 12-11-3 11-0-3 

93 A2 AB B3 BO c 63 I 6C t 74 
d m u 

12-0-9-4 12-11-9-4 11-0-9-4 12-11-0-9-4 12-0-4 12-11-4 11-0-4 
94 A3 AC B4 BE d 64 m 60 u 75 

e n v 
12-0-9-5 12-11-9-5 11-0-9-5 12-11-0-9-5 12-0-5 12-11-5 11-0-5 

95 A4 AD B5 BF e 65 n 6E v 76 

f 0 w 
12-0-9-6 12-11-9-6 11-0-9-6 12-11-0-9-6 12-0-6 12-11-6 11-0-6 

96 A5 AE B6 CO f 66 0 6F w 77 

9 p x 
12-0-9-7 12-11-9-7 11-0-9-7 12-11-0-9-7 12-0-7 12-11-7 11-0-7 

04 A6 AF B7 Cl 9 67 P 70 x 78 

h Q V 
12-0-9-8 12-11-9-8 11-0-9-8 12-11-0-9-8 12-0-8 12-11-8 11-0-8 

9B A7 BO B8 C2 h 68 Q 71 V 79 

i r z 
12-8-1 11-8-1 0-8-1 8-1 12-0-9 12-11-9 11-0-9 

99 A8 Bl B9 60i 69 r 72 z 7A 

e , 
\2-11 12-8-2 11-8-2 8-2 12-0-8-2 12-11-8-2 11-0-8-2 

9A [ 5B I 50 7C : 3A C4 CB 02 

$ 
0-8-3 

# 
12-8-3 11-8-3 8-3 12-0-8-3 12-11-8-3 11-0-8-3 

9B 2E $ 24 • 2C # 23 C5 CC 03 

< % @ 

12-8-4 11-8-4 0-8-4 8-4 12-0-8-4 12-11-8-4 11-0-8-4 
14 < 3C 2A % 25 @ 40 C6 CO 04 

I II 
12-8-5 11-8-5 0-8-5 8-5 12-0-8-5 12-11-8-5 11-0-8-5 

15 I 28 I 29 5F ' 27 C7 CE 05 

+ 
11-8-6 

> = 
12-8-6 0-8-6 8-6 12-0-8-6 12-11-8-6 11-0-8-6 

9E + 2B ; 38 > 3E = 30 CB CF 06 

I .... ? .. 
12-8-7 11-8-7 0-8-7 8-7 12-0-8-7 12-11-8-7 11-0-8-7 

lA , 21 ... 5E ? 3F .. 22 C9 00 07 

1 1 1 1 1 
0 1 1 1 1 

1 0 0 1 1 
1 0 1 0 1 

B C 0 E F 
1111 1121 1131 1141 1151 

{12-O }II-O 
0 

12-11-0-8-1 0-8-2 0 
08 { 7B } 70 .\ 5C 0 30 

A J 1 
12-11-0-1 12-1 11-1 11-0-9-1 1 

09 A 41 J 4A 9F 1 31 

B K 5 2 
12-11-0-2 12-2 11-2 0-2 2 

OA B 42 K 4B 5 53 2 32 

C L T 3 
12-11-0-3 12-3 11-3 0-3 3 

DB C 43 L 4C T 54 3 33 

0 M U 4 
12-11-0-4 12-4 11-4 0-4 4 

DC 0 44 M 40 U 55 4 34 

E N V 5 
12-11-0-5 12-5 11-5 0-5 5 

00 E 45 N 4E V 56 5 35 
F 0 W 6 

12-11-0-6 12-6 11-6 0-6 6 
DE F 46 0 4F W 57 6 36 ' 

G P X 7 
• 12-11-0-7 12-7 11-7 0-7 7 

OF G 47 P 50 X 56 7 37 

H 0 Y 8 
12-11-0-8 12-8 11-8 0-8 8 

EO H 48 0 51 Y 59 8 38 

I R Z 9 
12-11-0-9 12-9 11-9 0-9 9 

El I 49 R 52 Z 5A 9 39 

IILVM) 
12-11-0-8-2 12-0-9-8-2 12-11-9-8-2 11-0-9-8-2 12-11-0-9-8-2 

E2 E8 EE F4 FA 

12-11-0-8-3 12-0-9-8-3 12-11-9-8-3 11-0-9-8-3 12-11-0-9-8-3 
E3 E9 EF F5 FB 

.J' rI 
12-11-0-8-4 12-0-9-8-4 12-11-9-8-4 11-0-9-8-4 12-11-0-9-8-4 

E4 EA FO F6 FC 

12-11-0-8-5 12-0-9-8-5 12-11-9-8-5 11-0-9-8-5 12-11-0-9-8-5 
E5 EB Fl F7 Fo 

y 
12-11-0-8-6 12-0-9-8-6 12-11-9-8-6 11-0-9-8-6 12-11-0-9-8-6 

E6 EC F2 F8 FE 

12-11-0-8-7 12-0-9-8-7 12-11-9-8-7 11-0-9-8-7 12-11-0-9-8-7 
E7 EO F3 F9 EO FF 



CONTROL DATA CHARACTER SETS 
SHOWING TRANSLATIONS BETWEEN DISPLAY CODE AND ASCII/EBCDIC 

ASCII EBCDIC ASCII EBCDIC 
DISPLAY DISPLAY 

CODE UPPER LOWER UPPER LOWER CODE UPPER LOWER UPPER LOWER 

CASE CASE CASE CASE CASE CASE CASE CASE 

OCTAL CH CH HEX CH HEX CH HEX CH HEX OCTAL CH CH HEX CH HEX CH HEX CH HEX 

00 

01 

02 

03 

04 

05 

06 

07 

10 

11 

12 

13 

14 

15 

16 

17 

20 

21 

22 

23 

24 

25 

26 

27 

30 

31 

32 

33 

34 

35 

36 

37 

: : 3A SUB 1A 7A SUB 3F 

A A 41 a 61 A Cl a 81 

B B 42 b 62 B C2 b 82 

C C 43 c 63 C C3 c 83 

0 0 44 d 64 0 C4 d 84 

E E 45 e 65 E C5 e 85 

F F 46 f 66 F C6 f 86 

G G 47 g 67 G C7 g 87 

H H 48 h 68 H C8 h 88 

I I 49 i 69 I C9 i 89 

J J 4A j 6A J 01 j 91 

K K 4B k 6B K 02 k 92 

L L 4C I 6C L 03 I 93 

M M 40 m 60 M 04 m 94 

N N 4E n 6E N 05 n 95 

0 0 4F 0 6F 0 06 0 96 

P P 50 p 70 P 07 p 97 

0 0 51 q 71 0 08 q 98 

R R 52 r 72 R 09 r 99 

S S 53 s 73 S E2 s A2 

T T 54 t 74 T E3· t A3 

U U 55 u 75 U E4 u A4 

V V 56 v 76 V E5 v A5 

W W 57 w 77 W E6 w A6 

X X 58 x 78 X E7 x A7 

y Y 59 y 79 Y E8 y A8 

Z Z 5A z 7A Z E9 z A9 

0 0 30 OLE 10 0 FO OLE 10 

1 1 31 DCl 11 1 F1 DCl 11 

2 2 32 DC2 12 2 F2 DC2 12 

3 3 33 DC3 13 3 F3 TM 13 

4 4 34 DC4 14 4 F4 DC4 3C 

NOTES: 

1. The terms "upper case" and "lower case" apply only to the case con­
versions, and do not necessarily reflect any true "case". 

2. When translating from Display Code to ASCII/EBCDIC, the "upper 
case" equivalent character is taken. 

3. When translating from ASCII/EBCDIC to Display Code, the "upper 
case" and "lower case" characters fold together to a single Display 
Code equ ivalent character. 

4. All ASCII and EBCDIC codes not listed are translated to Display Code 
55 (SPI. 

60493800 A 

40 5 5 35 NAK 15 5 F5 NAK 

41 6 6 36 SYN 16 6 F!) SYN 

42 7 7 37 ETB 17 7 F7 ETB 

43 8 8 38 CAN 18 8 F8 CAN 

44 9 9 39 EM 19 9 F9 EM 

45 + + 2B VT OB + 4E VT 

46 - - 20 CR 00 - 60 CR 

47 . 2A LF OA 5C LF 

50 / / 2F SI OF / 61 SI 

51 ( ( 28 BS 08 ( 40 8S 

52 ) ) 29 HT 09 ) 5D HT 

53 S $ 24 EOT 04 S 5B EOT 

54 = 3D GS 10 ~ 7E IGS 

55 SP SP 20 NUL 00 SP 40 NUL 

56 2C FF OC 6B FF 

57 2E SO OE 4B SO 

60 - = = 23 ETX 03 = 7B ETX 

61 I I 58 FS 1C t 4A IFS 

62 1 1 50 SOH 01 ! 5A SOH 

63 % % 25 ENO 05 % 6C ENO 

64 -t, " .. 
22 STX 02 " 7F STX 

65 - 5F DEL 7F 60 DEL - -- -
66 v 21 \ 70 1 4F 

, 
! ! I 

, 
67 A & & 26 ACK 06 & 50 ACK 

70 t 27 BEL 07 70 BEL 

71 t 7 ? 3F US 1F ? 6F IUS 

72 < < 3C { 7B < 4C : 
73 > > 3E RS lE > 6E IRS 

74 -:; @ @ 40 60 @ 7C 

75 ~ \ \ 5C : 7C \ EO I 
I 

76 -, .... .A. 5E - 7E -, 5F -
77 ; 38 ESC 1B 5E ESC 

5. Where two Display Code graphics are shown for a single octal code, 
the leftmost graphic corresponds to the CDC 64-character set (system 
assembled with IP.CSET set to C64.1), and the rightmost graphic cor· 
responds to the CDC 64·character ASCII subset (system assembled with 

IP.CSET set to C64.21. 

6. In a 63·character set system, the display code for the: graphic is 63. 
The % character does not exist, and translations from ASCII/EBCDIC % 

or ENO yield blank (558)' 

3D 

32 

26 

18 

19 

OB 

00 

25 

OF 

16 

05 

37 

10 

00 

OC 

OE 

03 

1C 

01 

20 

02 

07 

DO 

2E 

2F 

1F 

CO 

lE 

79 

6A 

A1 

27 

A-5 





GLOSSARY 

Absol ute Address 

The actual physical location of a word in central memory. Contrast with relative address. 

Allocatable Device 

A storage device that can be shared by more than one job. 

Attach 

To make a permanent file accessible to a job by specifying the proper permanent fIle identification 
and passwords. 

Catalog 

To place a fIle under jurisdiction of the permanent fIle manager, making it a permanent me. 

Central Memory Resident (CMR) 

B 

Low core area of central memory reserved for tables, pointers, and subroutines necessary for operation 
of the operating system. 

COMPASS 

The assembly language of the CDC CYBER 170, CYBER 70 and 6000 Series computers. 

Control Points 

The concept by which the multiprogramming capability of CDC CYBER 170, CYBER 70 and 6000 
Series computers is exploited. When a control point number is assigned to a job, that job is allocated 
some of the system resources; and it becomes eligible foe assignment to the central processor for 
execution. 

Control Statement 

An instruction to the operating system or its loader. It is found in a section at the beginning of a 
job deck. 

CYBER Control Language (CCL) 

A group of control statements and commands that manipulate all control statements. With CCL, 
the user can conditionally skip or process control statements, process and reprocess a group of control 
statements, and process control statements in a file other than the job file. CCL is common to both 
NOS/BE and SCOPE 2 and is virtually identical on both systems. 

CYBER Record Manager 

A software package running under tlle.. NOS I and NOS/BE 1 operating systems that allows a 
vari,ety of record types, blocking types, and file organizations to be created and accessed. The 
execution time input/output of COBOL 4, COBOL 5, FORTRAN Extended 4, Sort/Merge 4, 
ALGOL 4, and the DMS-170 products is implemented through CYBER Record Manager. Neither 
the input/output of the NOS/BE 1 operating system nor any of the system utilities such as COpy 
or SKIPF is implemented through CYBER Record Manger. All CYBER Record Manager file 
processing requests ultimately pass through the operating system input/output routines. SCOPE 2 
record manager performs input/output for the SCOPE 2 operating system and its products. 
SCOPE 2 record manager is similar in capabilities and use to CYBER Record Manager. 

60493800 C B-1 



Dayfile 

A chronological system permanent fIle, maintained on a permanent file device, which forms an account­
ing and job history file. Entries, called dayfile messages, are generated by operator action or by the 
system when control statements are processed or other significant action occurs. The system dayfile 
has entries for the ,entire system. Every job receives a job dayfile with entries pertinent to that job. 

Deadstart 

The process of initializing the system by loading the system library programs and any of the product 
set from magnetic tape or a public device. Deadstart recovery is re-initialization after system failure. 

Default 

A system-supplied parameter value or name used when a value or name is not supplied by the user. 

Dependency Count 

A number established by the user with the Dyn parameter on a job statement and decremented by 
other jobs in the dependency string. The job is not run until the count reaches zero. 

Dependent Job 

A job which depends on the execution of other jobs before it can be run. It cannot be run until its 
dependency count is zero. 

Device Set 

A group of rotating mass storage devices. No device can belong to more than one device' set. Every 
file must be contained within one device set, but can be on different devices in that device set. 

Device Set Member 

A rotating mass storage device belonging to a device set. 

Device Type Code (dt) 

An optional parameter on REQUEST statement or macro which specifies the type of device on which 
the named file is to be stored. It can encompass a group of parameters to defme the device charac­
teristics in detail. 

Directive 

A directive is control information that appears on a separate fIle or in a separate section of the job 
deck. 

Dismountable Device 

A rotating mass storage device which can be logically disassociated from the running system. 

Display Code 

Character code used internally in the computer. Each character consists of 6 bits (2 octal digits). 

Disposition Code 

I B-2 

A two-character mnemonic indicating device, site, form, and format for processing a file named on a 
ROUTE control statement and a DISPOSE statement or macro. Also, an octal value returned to the 
file environment table corresponding to the ultimate disposition of the file. 

60493800 C 



DMPX 

ECS 

A standard dump which appears on file OUTPUT when a job terminates abnormally. It shows the 
contents of the exchange package for the program, the contents of central processor registers, and the 
contents of words before and after the location at which the program stopped. 

Extended core storage containing 60-bit words. ECS has a large amount of storage and very fast 
transfer rates. 

EDITLIB 

A utility program which allows creation or maintenance of library mes suitable for use by the loader. 

End-of-Information 

Physical end of data. In card decks, a card with a 6/7/8/9 multiple punch in column one. On SI tapes 
and on labeled Sand L tapes, a tape mark followed by an EOF trailer l~bel followed by two tape marks. 
On mass storage devices, the position of the last written data. CYBER Record Manager defines end-of- I 
information in terms of file residency and organization. 

End-of-Tape Reflective Marker 

A reflective strip near the end of a magnetic tape. It is used to signal termination of operations on a 
particular volume. At least 18 feet of tape must follow this marker. 

EST Ordinal 

Evict 

The number designating the position of an entry within the equipment status table established at each 
installation. 

Evict releases all space occupied by a file to the system, including space occupied by entries in system 
tables. 

Exchange Package 

A 16-word package containing information used in exchange jumps during job execution: contents of 
central processor registers, RA and FL in central memory and in ECS and the program address. It is 
stored in the control point area and printed as part of the standard output of an aborted job. 

Field Length (FL and FE). 

File 

FL is the number of central memory words assigned to a job. FE is the number of words in the 
direct access area of extended core storage assigned to a job. Within central memory or ext~nded core 
storage, the field length added to the reference address defines the upper address limit of a job. 

A file is a set of information that begins at beginning-of-information and ends at end-of-information 
and that has a logical file name. All flies have at least one partition, which is delimited by a system­
logical-record of level 17 on mass storage mes or tapes in SI format, and by a tape mark on S or L 
tapes. 

File Environment Table (FET) 

A table used for communication between a user program and the operating system when files are 
processed. An FET created by a compiler or by the assembly language programmer is required within 
the user field length for each file in the program. 

B-3 



I 

File Set 

One or more related flIes recorded on one or more volumes. 

Full track (FT) 

Reading/writing sequential sectors on an 844 disk pack (1: 1 interlace). 

Half track(HT) 

Hang 

Reading/writing alternate sectors on an 844 disk pack (2: 1 interlace). 

A system stop that may be caused by hardware failure or by an error in a system program. An error 
in a user program could cause that program to hang (go into a loop or abort). but no user program 
error should cause a system hang. 

Job Step 

Each individual control statement is a job step. A group of job steps forms a job stream. 

Job Stream 

A job stream is a group of control statements found at the beginning of a deck. 

INPUT 

A logical file name assigned by the system to every job. It contains the image of user job deck. 

JANUS 

A group of system peripheral processor routines which controls the processing of input and output 
fIles. JANUS controls up to 4 card readers, 3 card punches, and 12 line printers. It normally functions 
at control point 1, but can be assigned to another control point by the operator. 

L Tape 

A labeled or unlabeled magnetic tape containing physical records whose sizes range from one central 
memory word to an upper limit specifIed by the size of the buffer for that tape. 

Labeled Tape 

Level 

A magnetic tape with header and trailer labels having the format of the CDC CYBER 170, CYBER 70 
or 6000 Series standard labels or the 3000 Series labels; alternately a tape in S or L format with non­
standard labels. 

An indicator specifying relative position in a hierarchy. For priority. considerations, level 0 is the lowest 
priority. For system-logical-records, octal level numbers 0-17 can be used to organize files. For overlay 
and segment loading, a pair of numbers specifies level, with (0,0) being the portion of the program 
remaining in memory. 

Level Number 

B-4 

An octal number from 0-17 in a short physical record unit or zero-length physical record unit marker to 
form system-logical-record groups within files. Level number 17 indicates a logical end-of-partition. 
Level number 16 is used by checkpoint/restart and. should not otherwise be specified by the user. The , 
system creates system-logical-records with a level number of 0 for mass storage files and SI tapes when 
the user does not specify otherwise. 

60493800 C 



Library 

A file or collection of files containing executable programs and tables needed to locate and load the pro­
grams. A system library can contain peripheral processor programs in addition to the central processor 
programs. A user library is file formatted as a library but is not available to a job until it has been 
explicitly brought to the job. 

Load Point 

The reflective marker near the beginning of a magnetic tape. Data, including labels, is written after the 
load point. A rewind positions a single file volume to the load point. At least 10 feet of tape should 
precede the load point marker. 

Load Sequence 

A sequence of load operations which encompasses all of the loader's processing from the time that. 
nothing is loaded until the time execution begins. It includes initialization, specification of specified 
loader requests, and completion of load. 

Logical File Name (lfn) 

The 1-7 display coded alphabetic or numeric characters by which the operating system recognizes a file. 
Every lfn in a job must be unique and begin with a letter. 

Macro 

A COMPASS language statement which generates other source language code. 

Master Device 

The member of a device set designated as the device to contain all device set related tables. Every 
device set has one device that is a master device. 

Mount 

A logical operation that associates a device set member with a job. 

Monitor 

The system routine which coordinates and controls all activities of the computer system. It occupies 
peripheral processor 0 and part of central memory. It schedules the use of the central processor and 
the other peripheral processors. 

Non-allocatable Device 

A device such as a magnetic tape which can be used by only one job at a given time. 

NUCLEUS 

A system library containing the essential system programs needed to load and execute all other system 
library programs. It is available to all jobs without explicit call. 

OUTPUT 

A logical file name assigned by the system to each job to receive information such as assembly listing. 
diagnostics, load map, dayfile, and program output. It is printed at job termination unless otherwise 
disposed by the user. 

Partition 

A partition is a system-logical-record of level 17 on a mass storage file or a tape in SI format. On 
a S or L tape, it is delimited by a tape mark. 

60493800 C B-5 I 



Password 

A string of 1-9 letters or digits defining access permission assigned at attach time. Each password 
implies one type of access permission designated for permanent files, such as read, modify, extend, 
control or turnkey. 

Permanent File 

A mass storage me cataloged by the system so that its location and identification are always known to 
the system. Permanent files cannot be destroyed accidentally during normal system operation (including 
deadstart). They are protected by the system from unauthorized access according to privacy controls 
specified when they are created. 

Physical Record Unit (PRU) 

The smallest amount of information transmitted by a single physical operation of a specified equipment, 
measured in central memory words. A PRU for mass storage devices is 64 decimal words long; that 
for SI format binary magnetic tape is 512 decimal words: etc. 

Private Device 

A mass storage device which can be used only by specific request. It is logically removable, and is a 
member of a private device set. 

PRU Device 

A mass storage device or tape in SI format. 

Public Device 

An allocatable mass storage device available to the operating system for assignment of default residence 
meso 

PUNCH 

A logical file name that causes the file to be punched on cards in Hollerith format when the job 
terminates. 

PUNCHB 

A logical me name which causes the file to be punched on cards in binary format when the job 
terminates. 

Random File 

A file with an index entry to each record in the file. A file on a rotating mass storage device is a 
random me only when the random bit is set in the file environment table. The last record of the 
me is an index. 

Recall 

The state of a program when it has released control of the central processor until a fixed time has 
elapsed (periodic recall) or until a requested function is complete (auto recall). Recall is a system 
action request. as well as an optional parameter of some file action requests. 

Record 

B-6 

CYBER Record Manager defines a record or a portion thereof as the smallest collection of information 
passed between CYBER Record Manager and a user program. Eight record types exist, as defined by 
the RT field of the file information table (FIT). Other parts of the operating systems and their products 
might have additional or different definition of records. 

60493800C 



Reference Address (RA and RE) 

RA is the absolute central memory address that is the starting, or zero relative address assigned to a 
program. Addresses within the program are relative to RA. RA + 1 is used as the communication 
word between the user program and Monitor. RE is the absolute extended core storage starting address 
assigned to me. 

Relative Address 

All addresses in a relocatable program are relative to a base address of zero. When a relocatable pro­
gram is loaded for execution, the zero base address is assigned to a reference address. At that time, 
all addresses in the program become relative to the reference address. 

Removable Device 

A rotating mass storage device which can be physically detached from the RMS drive. 

Retention Period 

The number of days a permanent me or a device set is to be valid. 

Rolling 

The concept of removing jobs from central memory to mass storage before execution is complete so 
memory can be assigned to a higher priority job. 

Rotating Mass Storage (RMS) 

Disk storage device. 

S Tape (stranger tape) 

A magnetic tape (labeled or unlabeled. 7 or 9 track) containing physical records ranging in size from 
2 characters to 5120 decimal characters. This tape does not contain any level numbers. 

Scheduler 

A group of system routines which select jobs for assignment to control points and control swapping 
and rollout of jobs. 

System-Logical-Record 

A data grouping that consists of one or more physical record units immediately followed by a short 
physical record unit or a zero-length physical record unit. These records can be transferred between 
devices without loss of data or structure. A system-logical-record is equivalent to a CYBER Record 
Manager S type record. 

Sequen tial File 

A file in which records must be located by position, not address. 

Short PRU 

I 

A physical record unit containing data and a marker with an octal level number to mark the end of 
a system-logical-record. The amount of user data in a short PRU is less than the PRU size of the , 
storage device. A short PRU defines the end of a system-logical-record. In CYBER Record Manager, 
a short PRU may have several interpretations that depend upon record and block type. 

60493800 C B-7 



SI Tape 

A magnetic tape created under NOS/BE, 1 with fixed length physical record units. For coded tape = 
128 decimal central memory words; for binary tape =. 512 decimal central memory words. An SI 
tape can be labeled or unlabeled, and written on 7-track or 9-track tape. Identical to SCOPE tape 
under SCOPE 3.3 and 3.4 and to SI format tape under NOS 1 and KRONOS 2.1. 

Staging 

Releasing a tape job from the tape queue for scheduling. 

Standard Labeled Tape 

A tape with labels conforming to American National Standard Magnetic Tape Labels for Information 
Interchange X3.27-1969. Also called a system labeled tape. 

Swapping 

The concept of removing jobs form central memory to mass storage before execution is complete, so 
control point and memory can be assigned to another job. A job is swapped out when it is waiting 
for an external event, or when its control point and/or central memory is needed by a higher priority 
job. 

System Device 

A system device is a device that holds system information. All system devices are PRU devices but 
not all PRU devices are system devices. 

System Libraries 

The collection of tables and object language programs residing in central memory or on mass storage, 
which are necessary for running the system and its product set. 

Tape Mark 

A short record written on tapes under operating system control to separate label groups, ftles, and/or 
labels,. Interpretation depends on the tape format. 

Unlabeled Tape 

A magnetic tape that does not have a header label. Unlabeled tapes generated by the operating system 
contain a trailer label similar to the trailer for a standard labeled tape. 

Unit Record Device 

A standard unit record device such as the line printer, card punch, and card reader runs under control 
of JANUS. A non-standard unit record device, which includes graphic consoles, plotters, and paper 
tape readers and punches, run under installation software. 

UPDATE 

A utility program that allows a source statement program stored on mass storage or tape in UPDATE 
format to be modified and restored. 

User Library 

B-8 

Library file a programmer created through the EDITLIB utility. It contains loader tables referencing 
the assembled central processor programs, subroutines, text records, or overlays. 

60493800 B 



Volume 

A term synonymous with reel of tape. 

Zero-Length PRU 

A physical record unit, containing only an octal level number, that is used to terminate a system­
logical-record; it does not contain any user data. In CYBER Record Manager, a zero-length PRU 
with a level designator of 17 is a partition boundary. 

Zero-Byte Terminator 

The 12 bits of zero in the low order position of a central memory word are used to terminate a 
line of coded information to be output to a line printer or to represent cards input through a card 
reader. Files with names INPUT and OUTPUT have such terminators while in storage. Any file to 
be displayed at a terminal must also have such terminators for each line to be displayed correctly. 
A record with such a terminator in CYBER Record Manager is a zero-byte record (Z type record). 

In display code, two colons create 12 bits of zeros. If two consecutive colons occur in a file that 
contains zero-byte records, they may be stored in the lower order portion of a word and create a 
zero-byte record. 

Files created at a terminal under the CREATE command contain zero-byte terminated records. 

60493800 C B-9 • 





CONTROL STATEMENT SUMMARY 

All operating system requests that can be issued on control statements are noted in the following summary, 
together with parameters issued as part of each request. In this summary, constants are capitalized and 
variables are in lower case; the variables are defined below the illustrated format. 

A full description of each control statement appears in alphabetic order in section 4. 

Required characteristics of parameters appearing frequently are: 

lfn 

vsn 

lev 

setname 

ABS,from,thru. 

from 

thru 

Logical file names of 1-7 letters or digits beginning with a letter 

Volume serial number of 1-6 letters of digits, leading zeros are assumed 

Octal level number 0-17 for system-logical-records 

Device set name of 1-6 letters or digits beginning with a letter 

Beginning address of dump 

Ending address of dump 

ABS dumps absolute addresses of central memory. 

ACCOUNT,parameter list. 

ACCOUNT supplies accounting information. 

ADDSET ,MP=vsn,VSN=vsn,SN=setname,NF=n,NM=m,RP=ddd, *PF, *Q,mode. 

vsn 

setname 

n 

m 

ddd 

*PF 

*Q 

mode 

Volume serial number 

Device set name 

Maximum number of permanent files on device set 

Maximum number of members allowed in device set 

Retention period 

Permanent file device 

Queue file device 

Recording mode (HT or FT) 

ADDSET establishes a master device; adds members to a device set. 

C 

60493800C C-l 



ALTER,lfn. 

lfn Logical me name 

ALTER sets EOI to current position. 

ATTACH,lfn,pfn,ID-name,AC=act,CY=cy ,EC=ec,LC=n,MR=m,PW=pw ,RW=p,SN=setname. 

lfn Logical file name 

pfn 

name 

act 

cy 

ec 

n 

m 

pw 

p 

set name 

Permanent fIle name 

Creator identifier 

Account 

Cycle number 

ECS buffer size 

Lowest cycle 

Multi-read access 

Passwords 

Multi-read with single rewrite or single extend access 

Device set name 

ATTACH assigns permanent file to job. 

AUDIT,LF=lfn,MO=m,ID=name,PF=pfn, {AI=F} SN=setname,VSN=vsn,AC=n. 
AI=P 

C-2 

lfn Logical me name 

m AUDIT mode 

name Creator identifier 

pfn Permanent fIle name 

F Full two-line output 

P Partial one-line output 

setname Device set name 

vsn Volume serial number 

n Account number 

AUDIT provides a status of permanent files. 

pname 

pfile t 

Procedure name 

Name of the file where procedure pname is located 

A parameter having one of the following forms: 

fk Formal keyword 
v Value 
fk=v Value v is substituted for formal keyword fk 

BEGIN calls procedure pname on file pfile. 

60493800 C 



BKSP ,lfn,n. 

lfn Logical file name 

n Number of records (decimal) to be backspaced 

BKSP backspaces n system-logical-records. 

CATALOG ,lfn,pfn,ID=name,AC=act,CY=cy ,CN=cn,EX=ex,FO=fo,MD=md,MR=m,PW=pw ,RD=rd,RP=rp,RW=p, 
TK =tk,XR=xr. 

lfn Logical fIle name 

pfn Permanent file name 

name Creator identifier 

act Account parameter 

cy Cycle number 

cn Control password 

ex Extend password 

fo File organization IS, DA, or AK 

md Modify password 

m Multi-read access 

pw Password list 

rd Read password 

rp Retention period 

p Multi-read with single rewrite or single extend access 

tk Turnkey password 

xr Password for modify, extend, and control permissions 

CATALOG makes mass storage file permanent. 

CKP. 

CKP establishes checkpoint. 

COMBINE,lfnl,lfn2,n. 

IfnI Input fIle 

Ifn2 Output file 

n Number of records (decimal) 

COMBINE combines input file records into one logical record of level 0 on output file 

COMMENT.comment. 

comment Comment characters 

COMMENT inserts comments. 

60493800 C C-3 I 



COMPARE,lfn 1 ,lfn2,n,lev ,e,r. 

lfn Logical file name 

n 

lev 

Number of records (decimal) to compare 

Level number of system-logical-records 

e Number of non-comparable words to be written 

r Number of records to be processed during comparison 

COMPARE compares pairs of files or records. 

COPY,lfn I ,lfn2. 

lfn Logical file name 

COpy copies all files in a volume IfnI to Ifn2. 

COP¥BCD,lfnl,lfn2,n. 

lfn Logical file name 

n Number of records (decimal) 

COPYBCD copies packed output files to tape for subsequent off-line listing. 

COPYBF,lfnl,lfn2,n. 

lfn Logical file name 

n Number of partitions (decimal) 

COPYBF copies n binary partitions from Ifni to Ifn2. 

COPYBR,lfnl,lfn2,n. 

lfn Logical file name 

n Number of records (decimal) 

COPYBR copies n binary records from Ifn I to Ifn2. 

COPYCF ,IfnI ,lfn2,n. 

Ifn Logical file name 

n Number of partitions (decimal) 

COPYCF copies n Hollerith or External BCD partitions from IfnI to Ifn2. 

COPYCR,lfnl,lfn2,n. 

Ifn Logical file name 

n Number of records (decimal) 

COPYCR copies n Hollerith or External BCD records from IfnI to Ifn2. 

I C-4 60493800 C 



COPYN,f,outlfn,inlfn, ... . 

f Record format 

outlfn 

inlfn 

Output me 

Input me 

COPYN accepts input from up to 10 binary mes to be copied to the output fde (input directive record 
required). 

COPYSBF ,IfnI ,lfn2. 

Ifni Input ftle 

Ifn2 Output fde 

COPYSBF copies Ifni to Ifn2 formatting binary fde for single space printing. 

COPYXS,xlfn,scplfn,n. 

xlfn 

scplfn 

Input X tape must be requested in SI format 

Output tape must be requested in SI format 

n Number of partitions 

COPYXS converts binary X tapes to SI tape format. 

DELSET ,SN=setname,MP=vsnl ,VSN=vsn2. 

setname 

vsnl 

Device set name 

Master device volume serial number 

vsn2 Member volume serial number 

DELSET deletes a member from a device set. 

DISPLAY,exp. 

exp CCL expression 

DISPLAY evaluates exp and sends the result to the user dayfile. 

{ 

*dc 1 
DISPOSE,lfn, *dc= C • 

de = Cff 
de = lid 

lfn Logical me name 

* Defer disposition until E9J 

dc Disposition code 

C Central site route 

ff Special paper or card 

lid INTERCOM terminal route 

DISPOSE disposes a me immediately or at EOJ. 

60493800 C C-5 

I 



DMP,from,thru. 

from Beginning address in dump 

thru Last address in dump 

DMP dumps specified area of central memory. 

DMPECS,from,thru,format,lfn. 

from Beginning dump address 

thru 

format 

Last dump address 

Print format 

lfn File to receive dump 

DMPECS dumps specified area of ECS. 

DSMOUNT ,VSN=vsn,SN=setname. 

vsn 

setname 

Volume serial number 

Device set name 

DSMOUNT logically disassociates device set from job. 

.. 

DUMPF ,PW=pw ,MO=n, { !=lfnI } ,LF=lfn2,CL,DP=a,lD=name,PF=pfn,CY=cy,SN=sn,VSN=vsn, 

C-6 

pw Password 

n Dump mode 

I INPUT file 

IfnI Logical ftle name 

Ifn2 Output listing file 

CL Complete list 

a Dump type 

name Creator identifier 

pfn Permanent file name 

cy Cycle number 

sn Set name 

vsn Volume serial number 

ddd Number of days 

yyddd Year-day date 

mmddyy Month-day-year date 

hhmm Hour-minute time qualifier 

DUMPF dumps permanent fIles to tape. 

IN=ddd 
IN=yyddd 
LA=mmddyy 
DA=yyddd 
CD=mmddyy 
TI=hhmm 

60493800 A 



EDITLIB, USER,I =lfndir ,L=lfnlist. 

Ifndir 

Ifnlist 

Directive input file 

List ftle of output 

EDITLIB creates a USER library file (directive record required; see section 4 under EDITLAB for 
directives and their formats). 

ELSE,ls. 

Is Label string 

ELSE initiates a skip or terminates a skip initiated by an IFE statement. 

ENDIF,ls. 

Is Label string 

ENDIF terminates a skip initiated by an IFE, ELSE, or SKIP statement. 

ENDW,ls. 

Is Label string 

ENDW, when used in conjunction with a WHILE statement, brackets a group of control statements 

to be conditionally reprocessed. 

EXECUTE. 

EXECUTE completes loading and linking of elements for execution, then executes this program. 
Also refer to the LOADER RM, section 3, for additional information. 

Em,n}· 
omitted 

C 

U 

S 

Execute if non-special error 

Execute 

Execute if non-special fatal error 

Execute if either special or non-special error 

EXIT establishes exit path in event of selected errors. 

60493800 C C-7 



EXTEND,lfn. 

lfn Logical file name 

EXTEND makes permanent an extension to permanent file. 

{
Lc=n } GETPF ,lfn,pfn,ID=name,AC=act,EC=ec, CY=cy ,MR=m,PW=pw,RW=p,ST=mmf. 

lfn Logical file name 

pfn Permanent file name 

name Creator identifier 

act Account 

ec ECS buffer size 

n Lowest cycle 

cy Cycle number 

m Multi-read access 

pw Password 

p Multi-read with single rewrite or single extend access 

mmf System on which file is cataloged 

GETPF assigns a local copy of a permanent file to job. 

IFE,exp,ls. 

C-8 

exp 

Is 

CCL expression 

Label string 

IFE conditionally causes skipping of following control statements. 

60493800C 



LABEL,lfu, {~}, {~ } , {~~~NG} ,1B,D=d,F=f,N"'Il,X =X,L=z, V=V,E=e,T=t,C=c,M=m,P=p,VSN=vsn. 

lfn Logical me name 

R Read fIle 

W Write me 

y 3000 series label 

Z Standard label 

RING Write-enabled ring required 

NORING Write-enabled ring prohibited 

IB Inhibit system noise brackets 

d Density 

f File data format 

n 9-track tape code conversion 

x Tape disposition 

z Label name 

v Volume number 

e Edition number 

t Retention period 

c Creation date 

m Multi-fIle set name 

p Position number 

vsn Volume serial number 

LABEL writes or checks on a tape file. 

LABELMS(DT=eq,mode,I=lfn) 

eq Device type 

mode Recording mode (HT or FT) 

lfn Logical fIle name for input directives 

LAB ELMS blank labels a disk before use in a device set. 

LIMIT,n. 

n Octal number representing the multiple· of 4096 60-bit words 

LIMIT limits amount of mass storage assigned to job. 

LISTMF ,M=mfn,P=p. 

mfn Multi-file name 

p File position number to begin listing 

LISTMF lists contents of a labeled multi-file tape. 

60493800 C C-9 



LOAD,lfnl/r,lfn2/r, .... 

lfn 

r 

Logical fIle name 

Rewind indicator 

LOAD loads programs on lfn into central memory. 

{
I=lfn} LOADPF ,LP=x,LF=lfn,CL,SN=setname,VSN=vsn,lD=name,PF=pfn,CY=cy, I . 

x Load files 

lfn Logical fIle name of listing 

CL Complete list 

setname Device set name 

vsn Volume serial number 

name Creator identifier 

pfn Permanent fIle name 

cy Cycle number 

lfn Logical file name of directive 

I INPUT file 

LOADPF loads permanent files that have been dumped to tape. 

MAP'{~~L t. 
PART~ 

OFF 

FULL 

PART 

No map 

Full map 

Partial map 

MAP selects map, no "map, or partial map option. 

MODE(m) 

m Program halt conditions 

MODE defmes program halt conditions. 

MOUNT(VSN=vsn,SN=setname,mode) 

vsn 

setname 

mode 

Volume serial number 

Device set name 

Recording mode (HT or FT) 

MOUNT must be used to access a device set. 

C·IO 60493800 C 



P AUSE,comment. 

PAUSE inserts formal comments - operator must respond. 

PURGE,lfn,pfn,ID=name,AC=act, { ~~:~y } ,EC=ec,MR=m,PW=pw ,RB=1 ,RW=p,SN=setname,ST=mmf. 

lfn Logical fIle name 

pfn 

name 

act 

n 

cy 

ec 

m 

pw 

1 

p 

setname 

mmf 

Permanent me name 

Creator identifier 

Account 

Lowest cycle 

Cycle number 

ECS buffer size 

Multi-read access 

Password 

Record block conflict 

Multi-read with single rewrite or single extend access 

Device set name 

System on which fIle is cataloged 

PURGE removes a permanent file from the system. 

RECOVER,SN=setname,VSN=vsn. 

setname Device set name 

vsn Master device volume serial number 

RECOVER validates a device set; reconstructs device set tables. 

REDUCE. 

REDUCE reduces field length of job after loading. 

RENAME,lfn,pfn,ID=name,AC=act,CN=cn,CY =cy ,EX=ex,MD=md,RD=rd,RP=rp,TK =tk,XR=xr. 

lfn Logical file name 

pfn Permanent me name 

name Creator identifier 

act Account parameter 

cn Control password 

cy Cycle number 

ex Extend password 

md Modify password 

60493800 C C-ll I 



rd 

rp 

tk 

xr 

Read password 

Retention period 

Turnkey password 

Password for control, modify and extend permission 

RENAME renames control information for permanent files. 

REQUEST ,lfn,dt,parameters. 

lfn Logical me referenced 

dt Device or device type; dt field can be expanded 

REQUEST assigns file to a device - see section 4. 

REQUEST,lfn,AX,EC. 

lfn 

AX 

EC 

Logical me name 

ECS device type 

ECS buffer file 

REQUEST assigns file to ECS device. 

REQUEST,lfn,dtaa,OV,EC,*PF,*Q, {SSNN } ,VSN=vsn. 
=setname 

lfn 

dtaa 

OV 

EC 

*PF 

*Q 

SN 

setname 

vsn 

Logical file name 

Device type mnemonic and allocation style 

Overflow 

ECS buffer fily 

Permanent file device 

Queue me device 

Setname specified by SETNAME control statement 

Device set name 

Volume serial number 

REQUEST assigns file to permanent file device on private or public device set. 

RESTART,name,n,S=xxx. 

name Name of checkpoint me 

n Decimal number of checkpoint where job is to be restarted 

xxx Decimal number of words in smallest physical record (used only with S tape) 

RESTART restarts job at check-point. 

I C-12 60493800C 



RETURN,lfnl,lfn2, .... 

lfn Logical fIle or multi-fIle set names 

RETURN releases files and associated devices from job and decrements tape unit required count. 

REVERT,ABORT. 

omitted 

ABORT 

Normal return to calling job or procedure 

Abort after return to calling job or procedure 

REVERT causes processing to return to the calling job or procedure. 

REWlND,lfnl,lfn2, . . . . 

lfn Logical file name 

REWIND rewinds file named. 

RFL,fl. 

fl New field length 

RFL redefines job field length. 

ROUTE If DEF {DC } {EC } {FC \ .{FID } {IC } {'PRI } {REP } 
,n, 'OC=dc' EC=ec' FC=fc I' FID=fid ' IC=ic ' PRI =pri ' REP=n ' 

{
ST } {TID } 
ST=mmf ' . TID=tid . 

TID=C 

lfn 

DEF 

DC 

dc 

EC 

ec 

Fe 
fc 

FID 

fid 

Ie 
ic 

PRI 

pri 

REP 

n 

60493800 C 

Logical file name 

Defer disposition code 

Evict fIle 

File disposition 

JANUS print fIles 

External characteristics of file 

Standard forms 

Forms code 

Output queue fde name same as job name 

File name in output queue 

Display code file format 

Internal· characteristics of file 

Standard priority 

Priority level 

No extra copies 

Repeat count 

{
sc=nn} 
SC ' 

C-13 

I 

I 



I 

C-14 

SC 
nn 

ST 

mmf 

Spacing code for 580 PFC print files 

Spacing code an:ay 

Process file on original system 

System on which file is cataloged 

TID Return job to original site 

tid INTERCOM terminal identification 

C Output at central site 

ROUTE directs a file to input or output queue. 

SAVEPF,lfn,pfn,ID=name,AC=act,CN=cn,CY=cy,EX=:=ex,FO=fo,MD=md,MR=m,PW=pw,RD=rd,RP=rp,RW=p, 
ST=mmf,TK=tk,XR=xr. 

lfn Logical me name 

pfn Permanent file name 

name Creator identifier 

act Account parameter 

cn Control password 

cy Cycle number 

ex Extend password 

fo File organization IS, DA, or AK 

md Modify password 

m Multi-read access 

pw Password list 

rd Read password 

rp Retention period 

p Multi-read with single rewrite or single extend access 

mmf System on which file is cataloged 

tk Turnkey password 

xr Password for modify, extend, and control permissions 

SA VEPF makes local fde permanent. 

SET ,sym=exp. 

sym CCL symbolic name 

exp CCL expression 

SET sets the value of CCL symbolic names. 

SETNAME,setname. 

setname Device set name 

SETNAME implicitly references device sets. 

60493800 C 



SKIP,ls. 

Is Label string 

SKIP causes unconditional skipping of the control statements that follow it. I 
S~B,lfn,n,lev ,mode. 

Ifn Logical ftle name 

n Number of records (decimal) to skip 

lev Level number of system-logical-records to skip 

mode B for binary ftles - C for coded files 

SKIPB skips backward by n system-logical-records of level lev or greater. 

SKIPP ,lfn,n,lev ,mode. 

lfn Logical ftle name 

n Number of records (decimal) to be skipped 

lev Level number of system-logical-records to skip 

mode B for binary files - C for coded ftles 

SKIPP skips ftle forward by n system-logical-records of level lev or greater. 

SUMMARY. 

SUMMARY provides accounting information. 

SWlTCH,n. 

n Sense switch number 

SWITCH sets switch to on or off. 

SYSBULL,pl,p2, ... ,pn. 

pi Bulletin names 

SYSBULL copies system bulletins to OUTPUT file. 

TRANSF ,job 1 ,job2, .... 

job Name of next job for execution 

TRANS decreases dependency count of named jobs. 

60493800 C C-lS 



TRANSPF ,PW=pw ,FS=setname 1, TS=setname2,FM=vsn 1, TM=vsn2,LF=lfn. 

Password list pw 

setnamel 

setname2 

vsnl 

Device set name from which permanent file information is transferred 

Device set name to which information is transferred 

vsn2 

lfn 

Volume serial number of member from which information is transferred 

Volume serial number of member to which information is transferred 

Logical file name of output listing 

TRANSPF transfers permanent files. 

UNLOAD,lfnl,lfn2, .... 

lfn Logical file or multi-me set names 

UNLOAD is same as RETURN but does not decrement tape unit count. 

VSN,lfnl =vsnl ,lfn2=vsn2, .... 

lfn Logical file name 

vsn Volume serial number associated with lfn 

VSN equates vsn to file name. 

WIllLE,exp,ls. 

exp 

Is 

eCL expression 

Label string 

WHILE, when used in conjunction with ENDW, conditionally reprocesses a group of control statements. 

60493800 C 



PUNCH CARD AND TAPE FORMAT 

This appendix contains details of the format of punch cards and magnetic tape. Two types of card format are 
discussed: Hollerith or coded cards and binary cards, which include the separator cards used between sections 
of a deck and between decks. Magnetic tape format is discussed in terms of the binary and coded formats produced 
on 7- and 9-track tapes in SI format. 

PUNCH CARD FORMATS 

Punch card formats can be coded Hollerith, standard binary, and free-form binary. 

Hollerith cards are produced when the file name is PUNCH, or the disposition code of the output file is PU 
(octal 0010). Unused columns at the end of the last Hollerith card are blank; a card with 7/8/9 multipunch follows 
the last card produced. 

Standard binary cards are produced when the file name is PUNCHB, or the file has a disposition code of PU, 
IC=BIN, and EC=SB (octal 1210). 

Free-form binary cards are produced when the file name is P80C, or the file has a disposition code ofPU, IC=BIN, 
and EC=80COL (octal 2210). If the number of words to be punched in free-form i.s not an even multiple of 16, 
the unused columns at the right of the last punched card are blank. A card with 7/8/9 is produced following the 
last free-form binary card. The flag cards are not punched as part of the output. 

HOLLERITH FORMAT 

Hollerith cards are often called coded cards. Each column can be punched to represent codes of any given character 
set (see appendix A). The hole code is translated by card reading devices into the binary code for the character. 
Blank columns are translated into a binary code representing a blank space. 

Hollerith punch cards can be in 026 or 029 format. 026 mode is a 63- or 64-character set defined by Control Data. 
029 mode is a Control Data 64-character subset of the codes defined by the American National Standard Code for 
Information Interchange, X3.4-1968 (ASCII mode). 

Each installation selects the default mode for cards to be read into the system, but cards in an alternative mode can 
be read when the job indicates another card mode. Appendix A shows card codes for 026 and 029 modes and dis­
cusses how to change modes within a job deck. 

60493800 C D-l 

o 

• 



END-Of-SECTION CARD 

A card containing octal 0007 (7/8/9) in column 1 separates sections in a job deck. Level numbers associated with 
the record are punched in Hollerith code in columns 2 and 3. The level number may be 00,01,02,03,04,05,06,07, 
10,11,12,13,14,15,16, or 17. If columns 2 and 3 are blank, the level number is assumed to be 00. Level numbers 
1-7 may be punched with a trailing blank in the form nb, where n is the level number and b is a blank. The format 
of this card is as follows: 

COLUMNS 

1 2 3 80 

12 ( 
11 ) 
0 ~ 
1 \ 
2 T 

en 
3: 4 0 

{ 
\ 

a: 5 J 
6 ( 
7 \ 
8 J 
9 ( 

STANDARD BINARY CARDS 

All standard binary cards must have punches in rows 7 and 9 of column 1; thus, any four octal digits ending with 5 
or 7 would act as a binary card marker. Any card without a 7/9 punch in column 1 is considered to be a Hollerith 
card; no legal Hollerith code contains a 7/9 punch combination. Any Hollerith card column containing an illegal 
Hollerith punch combination is read as a blank, and a message is produced for output giving the card number and 
the number of the record containing the card. 

Binary subprogram or data cards can contain the binary representation of up to 15 central memory words. This 
card type contains a 7/9 punch with a word count in rows 0/1/2/3 and a checksum flag in row 4, all in column 1. 
The word count indicates the number of binary words in the card, starting in column 3 and not extending beyond 
column 77. Column 2 contains a checksum of the binary words in columns 2 thm 77; the value of the checksum 
is a ones-complement sum, modulo 4095 (2**12 - 1=4095). If the checksum flag in row 4 of column 1 is punched, 
the checksum is ignored by the system. Columns 79 and 80 contain a card sequence number in binary. The 
lower five bits in column 79 and all 12 bits in column 80 make up the 17 bit serial number of the card record within 
the logical record that contains it. If cards are not read in sequential order, a warning message is produced for 
output; however, the cards are read and accepted. 

Columns 1, 2, 78, and 80 are produced when a binary punch file is punched through a remote terminal or JANUS 
controlled device. These columns are removed when the deck is read into the system, so that a card has only 15 
central memory words of information internally. 

• D-2 60493800 C 
( 



The format of a binary subprogram card is as follows: 

CI) 
s: 
o 
c:: 

12 

11 

o 

2 

3 

4 

5 

6 

7 
8 
9 

COLUMNS 

1 2 3 4 5 

r--

f-- -
8 ~ 
~ ~ 
~ l ~ ~ 
j I--

~ c: 

~ 

FREE-FORM BINARY CARDS 

Col Bi ' ' '' iI1~ IllIUlllldllUl1 

77 80 

( ( 
\ \ 

\ \ 

~ I \ ~ 

/ / 
\ \ g 
) ) 

I / 
Q)I~ I I (.) III 

) I 
c c 
Q) 0-

:J:3. 

( I g a> 
CI).c 

\ "0 E 
~ :J 

\ uz 

Free-form binary cards are unique since they can be read as sixteen 60-bit words per card (eighty 12-bit columns) with 
no checksum or sequence number. For example, a card having 6/7/8/9 punched in column 1 and at least one punch 
in one other column can be read as a free-form binary card. Normally, it would be treated as an end-of-information 
card. 

Free-form binary cards must be preceded by a flag card with all 12 rows punched in column 1 and any other column 
and no other punches. This flag card is not read as containing information; it signals that free-form binary cards follow 

Any number of cards may follow; none may have the same form as the free-form flag card or a 6/7/8/9 end-of­
information card. The free-form binary cards are read into memory in 16-word increments. After the free-form 
binary cards, another flag card with 12 rows punched in colum 1 and the same column as the first flag card must 
appear. This card signals the end of the free-form binary deck and standard binary or Hollerith cards follow. 
The operator's console displays TRAY EMPTY until a matching flag card is read. 

If it is necessary for a free-form binary card with the same appearance as the flag card to appear in the deck, it is 
possible to create a flag card of a different form. Any card having 12 rows in column 1 punched and 12 rows in any 
other column punched with no other punches on the card is recognized as a free-form flag; therefore, 79 variations 
are possible for the flag card. 

60493800 C D-3 • 



Normally, a series of free-form binary cards and their flag cards are organized into one record in an input file. However, 
they can be preceded and/or followed by standard binary and/or Hollerith cards within the same record. The different 
cards in the record are accepted; however, a message indicating a change in mode is produced for the record. A valid 
record might consist of the following: 

1. A series of Hollerith cards. 

2. A start free-form flag card (7777 in columns 1 and 80) with no other punches. 

3. A series of free-form binary cards without a standard 6/7/8/9 card or any card identical with 2. 

4. An end free-form flag card identical with 2. 

5. A start free-form flag card, which might be the same as or different from 2 and 4. 

6. A series of free-form binary cards as in 3. 

7. An end free-form flag card identical with 5. 

8. A series of standard binary cards which should be in order according to sequence numbers. ff not, a sequence 
number check message and a mode change message are issued for the record. 

9. A 7/8/9 card. 

TAPE FORMAT 

7-TRACK CODED 51 FORMAT 

For coded data being output on 7-track tape, the PP converts display code to internal BCD codes if a 6684 converter 
is not available. The tape controller converts internal BCD to the external BCD codes recorded on the tape. In the 
63-character set display code, characters 33 and 63 convert to an external BCD 12. However, if the last two 
characters of a central memory word have a display code representation of 0000 (end-of-line delimiter byte), they 
become an external BCD 1632. 

For 7-track coded tapes being read in, the tape controller converts external BCD to internal BCD codes. The PRU 
converts the internal BCD to display codes (if a 6684 converter is not available) before transferring data to the file 
buffer. On input, the external BCD 12 is converted to a display code 33 (zero). The end-of-line delimiter byte, which 
must occur at some multiple of five bytes, is converted to a 0000 display coded end-of-line byte. 

Peculiarities for coded tape for the 64-character set: 

OUTPUT INPUT 
r A, , ........ A, "-
Display Internal External Internal Display 
Code BCD BCD BCD Code 

00 16 16 16 00 
33 00 12 00 33 
63 12 12 00 33 

line Terminator 0000 1672 1632 1672 0000 

e· D4 60493800 C 



Display code 00 is not a valid character; display code 63 (colon) is lost. Line terminators (byte of all zeros in lowest 
byte of a central memory word) will not result in the loss of zeros. 

Peculiarities for coded tape for the 64-character set: 

OUTPUT INPUT 

r ,A., '-. ........ A" "-
Display Internal External Internal Display 

Code BCD BCD BCD Code 

00 12 12 12 33 
33 00 12 12 33 
63 16 16 16 63 

line Terminator 0000 1672 1632 1672 0000 

Display code 00 (colon) is lost; display code 63 is now a valid character. An exception exists when up to 
nine 0 characters precede a line terminator. They are changed in the PP buffer to 638. On tape, they result in 
external BCD 16. When tape is read, a 63 preceding a line terminator is converted to display code zero. This 
substitution ensures preservation of all zeros preceding a line terminator, regardless of the graphic character set used. 

Appendix A contains the conversion tables for these codes. Conversion is performed by a 6684 if it is part of the 
hardware configuration. 

The system-logical-record terminator on 7-track coded tape is eight characters long. Its format in external BCD is: 

47 4 o 

Blank (Reserved for Future System Use) 

Level Number, in Binary/ 

The level number is the low-order 5 bits of the last character. The upper 2 bits of this character are always zero 
except for level zero which is represented by 010000 (binary). For example, in external BCD,level 5 would be 
represented by 2020202020202005 and level 0 would be represented by 2020202020202020. 

A record terrriinator marker is appended to the record data, if possible, or written as the only information in the 
following tape block. 

60493800 C D-5 • 



7-TRACK TAPE BINARY 51 FORMAT 

The system-logical-record terminator on 7.-track binary tape is 48 bits long. Its format is: 

47 35 23 11 5 o 

5523 3552 2754 00 L 

The marker immediately follows record data if it can be contained within the tape block; otherwise, it is written as the 
only information in the following tape block. 

9-TRACK TAPE CODED OR BINARY SI FORMAT 

When SI format 9-track tapes are written or read, information is not converted by the system. Al160-bits of a word 
in central memory are written to the tape; each pair of 12-bit bytes is written as three 8-bit characters. Conversely, 
each three 8-bit characters on a tape are written as two 12-bytes when the tape is read. Partial central memory words 
cannot be read or written on SI tapes. SI tapes can be written or read in packed mode. 

The system-logical record terminator has the same format as that for 7-track coded tapes. 

Table D-l summarizes tape file characteristics. 

60493800 C 



0\ 

~ 
\0 
CoN 
00 
o o 
n 

9 
-...J 

• 

TABLE D-l. TAPE FILE CHARACTERISTICS 

Tape Maximum Data Format Noise End-of- End-of- End-of-
Track/Density Mode Type Parity Block Size on Tape Size* Record File Information 

i 

9 TRACK Binary SI Odd 5120 characters Packed§ ~6 t tt TM EOFI TMTM 

. HD=800 bpi Binary S Odd 5120 characters Packed§ ~6 Interblock Tape ttt 
GE=6250 cpi 

gap (IBG) mark (TM) 

PE=1600 cpi Binary L Odd No maximum** Packed § ~(j IBG TM ttt 

Hardware Coded SI Odd 1280 characters Packed § ~.6 t tt TM EOFI TM TM 
selects density 
on read. Coded S Odd 5 120 Characters EBCDIC or ASCII ~6 IBG TM ttt 

conversion 

Coded L Odd No maximum** EBCDIC or ASCII ~6 IBG TM ttt 
conversion 

7 TRACK Binary SI Odd 5120 characters No conversion ~6 t tt TMEOFI TMTM 

LO~200 bpi Binary S Odd 5120 characters No conversion ~6 IBG TM ttt 

HI=556 bpi Binary L Odd No maximum** No conversion ~6 IBG TM ttt 

HY=800 bpi Coded SI Even 1280 characters External BCD ~6 t tt TM EOFI TMTM 

Hardware can Coded S Even 5120 characters External BCD ~6 IBG TM ttt 
read short 
records at Coded L Even No maximum** External BCD ~6 IBG TM ttt 
wrong density. 

§ Packed means four 6-bit characters in memory are changed to or from three 8-bit characters on tape. 

t Short or zero length PRU with a 48-bit ma.rker containing a level number ~ 16B. 

tt Zero length PRU with a 48-bit marker containing a level number of 17B. 

ttt For unlabeled tapes: on a write, 4 tape marks; on a read, undefined so that the user must determine. For labeled tapes: TM EOFI TM TM. 

* May be changed by installation option. Defined in 6-bit characters. 

** Maximum size on read (except READSKP) or write is determined by size of user data buffer. 
-----





" CYBER 170 MODEL 176 DIFFERENCES E 

Major hardware differences between CYBER 170 Model 176 and other CYBER 170 models are as follows: 

CYBER 170 Model 176 extended memory is analogous to the CYBER 70 Model 76 large central memory 
(LCM) or large central memory extended (LCME). Extended memory cannot be shared between mainframes 
and does not have a distributive data path (DDP) access. Shared mass storage (not 819 disk) and coupler 
linkage multimainframe (MMF) modes are supported; the ECS MMF link is not supported. The maximum 
extended memory block copy size is 1023 decimal words. 

The instruction word stack has a 2-word read-ahead and is not voided by a jump out of the stack or 02 (JP) 
instruction. When instructions are modified, a return jump is required to void the stack before the modified 
instructions are executed. 

Because of these differences, products have been modified to execute and compile based on a MODEL= 176 
value in the MODEL micro (refer to the NOS/BE Installation Handbook). Binaries generated by other model 
settings will not necessarily run under the new models and vice versa. 

CYBER 170 Model 176 is not compatible with the CYBER 170 Model 175 in the following ways: 

Model 1 76 systems always execute in CEJ /MEJ mode; the switch, if present, has no effect. 

Model 1 76 peripheral processor subsystem (PPS) can cause exchange jumps in the CPU only when the monitor 
flag is clear. 

Model 176 instruction word stack (IWS) is not degradable. 

Model 176 CPU has an instruction word step mode. 

Model 176 02 instruction does not void the IWS. . . 

Modell 76 jump out of stack does not void the IWS. 

60493800 C E-l • 



CYBER 70 Model 76 LCM/LCME memory replaces ECS as extended memory on CYBER 170 Model 176. 
The maximum number of 60·bit words that can be transferred in the block copy instruction is 1023 decimal. 
CYBER 170 Model 176 does not support flag register operations. Extended memory has single error correction/ 
double error detection (SEC/DED). 

• E-2 

The 011, 012, and 013 instructions are legal on a model 176 in any word parcel. NOS/BE forces a half 
exit, as performed on model 175 if the instruction is in the upper word parcel. 

The 014-017 instructions are legal on model 176. 

The 464-467 instructions are legal no-op instructions on model 176 

30-bit instructions in parcel 3 are legal on model 176. 

Model 176 shift unit tests bits 6 through 11 of Bj to determine if the shift count exceeds 63 decimal. 

Model 176 shift unit returns negative zero when a negative number is right shifted by more than 
63 decimal places. 

Model 176 divide unit enters a 4000 .... pattern below the least significant bit of the dividend on 
round operations. Overflow or underflow on exponent subtract returns overflow or underflow. 

Model 176 floating add unit returns a positive zero if the shift count exceeds 128. 

Model 176 branch instructions sense infinite and indefinite as out of range. 

A central exchange (013 instruction) exchanges to RAS + K on a model 176. 

Model 176 CPU has no breakpoint capability. 

60493800 C 



Abort 
ABORT macro 7-13 
processing 2-14, 7 -13 
recovery 7-28 

ABS control statement 4-4 
Absolute dump 4-4,4-29 
Access to file (also see Assign) 

exclusive 3-16 
multi-read 3-15 
permission 3-15, 6-20 

ACCOUNT control statement 4-5 
Accounting 

ACCOUNT control statement 4-5 
dayfile messages 2-17 
job 4-5 
job statement 4-2 
permanent file 3-21,4-8 
SUMMARY control statement 4-86 

ADD directive of EDITLIB 4-39 
ADDSET control statement 4-5 
ALTER 

control statement 4-6 
macro 7-75 

ANSI 
label format 3-32 
noise record on tape 3-28 

Archive 
dump 4-33 
me definition 3-16 

ASCII 
character set A-I 
print me codes 3-40 

Assembler (also see COMPASS) 
call 2-7 

Assign 
device to job 

device set MOUNT 4-61 
other REQUEST 4-64, 7-33 

device to set 
ADDSET 3-9, 4-5 

file to device 
device set 4-64, 7-33 
ECS 4-70 
multi-fue set 3-38 
permanent file 4-64 
tape 4-50,4-65, 7-33 

60493800 C 

INDEX 

when needed 3-3, 3-8 
Attach 

ATTACH control statement 4-7 
ATTACHmacro 7-75 
GETPF control statement 4-50 

Attributes of device set 3-8 
AUDIT utility 4-8 
Automatic 

device assign 4-65 
recall 7-2 
tape assign 3-39, 4-51 , 4-67 

Backspace (see BKSP) 
Batch job 2-1 
BEGIN control statement 5-23 
Beginning-of-information 3-6 
Binary 

default file name 2-6 
program load 4-56 

Binary tape format 
(see copy utilities) 
(see SI, S, L tape) 
(see 7-track, 9-track tape) 

BKSP 
control statement 4-10 
macro 7-63 

BKSPRU macro 7-64 
Block store ECS 4-3 
Buffer 

CIO 6-20 
ECS 3-26 

Busy bit of FET 6-5 

Call-by-name control statement 5-24 
Carriage control 

add with COPYSBF 4-25 
COPYBCD 4-16 
print file 3-40 

Catalog 
CATALOG control statement 4-10 
CATALOG macro 7-75 
permission 3-15 

Central memory (also see Field length) 
definition 1-3 

Index-l • 



request 4-3,4-74, 7-16 
CCL 

conditional control statements 5-8 
expressions 5-2 
functions 5-14 
iterative control statements 5-11 
operators 5-3 
procedures 5-18 

. sample jobs 5-33 
syntax 5-2 

Character set 
codes A-I 
conversion 3-32 

Checkpoint/Restart (see CHECKPT, CKP, RESTART) 
CHECKPT macro 7-31 
CIO codes 6-6 
Circular buffer 

FET fields 6-14 
usage 6-21 
WRITOUT 7-56 

CKP control statement 4-12 
CLOCK macro 7-19 
Close 

indexed file 6-9 
CLOSE macro 740 
CLOSER macro 742 
UPbit 7-42 

CM (also see Central memory, Field length) 
parameter 4-3 

Code and Status (see CS) 
Coded tape (see SI, S, L tape) 
COMBINE control statement 4-13 
Comment 

COMMENT control statement 4-13 
informal 4-1 
procedure 5-32 

Communication 
area 7-6 
FET 6-1 
macros 7-10 
with operator 1-7 

COMPARE control statement 4-14 
COMPASS macros 7-1 
Compiler calls 2-7 
Complete bit of FET 6-5 
Conditional control statements 5-8 
Console 1-7 
Constants, integer 5-5 
CONTENT directive of EDITLIB 4-41 
Control permission 3-15 
Control point 1-3 . 
Control point area 

defmed 1-3 
dump 4-30 

• Index-2 

Control statement 
efficient ordering 2-8 
section in deck 24 
syntax 4-1 
parameter cracking 7-6 

CONTROLC macro 7-27 
Copy 

COpy utility 4-15 
COPYBCD utility 4-16 
COPYBF utility 4-16 
COPYBR utility 4-19 
COPYCF utility 4-16 
COPYCR utility 4-19 
COPYL utility 1-13 
COPYN utility 4-20 
COPYSBF utility 4-25 
COPYXS utility 4-25 
library copy 4-35 

Core (see Central memory, Field length) 
CP parameter 4-4 
CPC 7-3, 7-10 
CPU 

characteristics 1-5 
selection 44 
time limit 4-2 

Create 

CS 

library 4-35 
permanent file 4-10 

codes for errors 6-19 
codes for status 6-5 
field of FET 6-5 

CYBER hardware 1-1, 1-6 
CYBER Record Manager 

file copy 4-17,4-20 
macro summary 7-9 
permanent file parameter 4-11 
product summary 1-10 
random files 3-6,3-11 
record types 3-7 

Cycle 
incomplete 3-17 
permanent file 3-14 

.DATA command 5-30 = DATA parameter 5-20,31 
DATE macro 7-19 
Dayfile 

comment 4-13 
explanation 2-16 
job 2-15 
message macro 7-17 

60493800 C 



DC codes 4-77 
Deck structure (see Job deck) 
DELETE directive of EDITLIB 4-41 
DELSET control statement 4-26 
Density (see Magnetic tape) 
Dependent job 

count 4-87 
identification 4-3 
multi-mainframe 4-4 
TRANSF 4-86, 7-27 

Device set 
add device 4-5 
default 3-8 
defined 3-7 
delete device 4-26 
dismount 4-32 
master 3-7 
mount 4-61 
name 3-9 
private set usage 3-9 
public set usage 3-8 
recovery 4-62 

Device types 6-7 
Directives 

COPYN 4-21 
defined 2-9 
EDITLIB .4-36 
LABELMS 4-53 
permanent file dump 4-32 

DISCARD INTERCOM command 3-20 
Disk pack (see Rotating mass storage) 
Dismount pack 4-32 
DISPLAY control statement 5-12 
Dispose of file 

DISPOSE control statement 4-27 
DISPOSE macro 7-66 
disposition codes 6-12 
EVICT macro 7-65 
need for 3-4 
remote terminal 4-28 
RETURN control statement 4-73 
ROUTE control statement 4-75 
ROUTE macro 7-67 
UNLOAD control statement 4-92 
UNLOAD macro 7-65 

DMP control statement 4-29 
DMPECS control statement 4-31 
DMPX 

definition 2-14 
format of output 4-29 
suppress 7-14 

Drop job 2-15,4-48 
DSD 1-6 
DSMOUNT control statement 4-32 

60493800 C 

Dump 
absolute memory 4-4,4-31 
checkpoint 4-12 
ECS 4-31 
exchange package 4-29 
format of output 4-29 
permanent files 4-32 
relative memory 4-30 

DUMPF utility 4-32 

EC codes 4-76,6-12 
ECS 

buffered files 3-25, 4-7, 4-70 
direct access request 4-3 
dump 4-31 
hardware 1-9 
request 4-70 
resident files 3-26 

EDIT LIB 
directive summary 4-37 
examples 4-46 
utility 4-35 

ELSE control statement 5-10 
End-of-file (see Partition) 
End-of-information 

job deck 2-4 
physical structure 3-6 

End-of-partition (see Partition) 
ENDIF control statement 5-11 
ENDRlJN 

directive of EDITLIB 4-41 
macro 7-14 

ENDW control statement 5-12 
Entry points and libraries 2-4 
.EOF command 5-32 
EOF labels 3-36 
.EOR command 5-32 
EOV labels 3-36 
EPbit 3~26,4-71,6-10 
Error processing (see EP bit) 

detailed code in FET 6-14 
ECS 3-26 
tape 6-15 

Evict file 
DISPOSE 4-27, 7-66 
EVICT macro 7-65 
RETURN 4-73 

Exchange package 
contents 4-29 
definition 1-6 
dump 4-29 

Execution 

Index-3e 



call 2-5 
EXECUTE control statement 4-47 

Exit 
ABORT macro 7-13 
EXIT control statement 4-47 
job termination 2-14 

Expired 
device set 4-6 
label 3-38 
permanent file 4-11 
permanent file dump 4-34 

Extend 
EXTEND control statement 4-49 
EXTEND macro 7-75 
permission 3-15 

Extended core storage (see ECS) 
Extended label processing 

FET 6-23, 7-35 
usage 3-33 

Extended print train 3-10 

FDB macro 7-72 
FET 

creation 6-1 
definition 6-1 
label fields 6-23 
table 6-2 

FETCH INTERCOM command 3-20 
Field length 

change 4-74 
definition 1-4 
dump 4-29 
library table 4-40 
reduction 4-63 
request on job statement 4-3 

, management 4-63,4-74 
MEMORY macro 7-16 
REDUCE control statement 4-63 
RFL control statement 4-74 

FILE control statement 1-11 ;4-16 
File environment table (see FET) 
FILE function 5-15 
File 

beginning-of-information 3-6 
definition 3-1 
disposition 4-75 
divisions 3-6 
end-of-information 3-6 
general information 3-4 
label 3-32 
name 3-1 
request 4-64, 7-33 

• Index-4 

FILE macro 7-9 
:: FILE parameter 5-20, 31 
FILEB macro 6-3 
FILEC macro 6-3 
FILESTAT macro 7-21 
FILINFO macro 7-22 
FINISH directive of EDITLIB 4-42 
FL (see Field length) 
Flaws 4-54 
FNT pointer 6-14 
FORM product summary 1-12 
Forms code 4-78 

GETJCI macro 7-24 
GETPF control statement 4-50 
Globallibrary 2-5 

Hardware 
error mode 4-60 
functions 1-1 

IC codes 4-78,6-13 
IFE control statement 5-9 
Indexed file 

definition 3-12 
fields in FET 6-18 
random bit and CLOSE 6-9 
usage 3-12 

INPUT file 
defined 3-1 
usage 2-1 

Integer constants 5-5 
Interactive jobs 2-1 
INTERCOM 

file routing 4-75 
library table parameters 4-39 
memory use 1-4 
permanent file usage 3-20 
product summary 1-10 
SYSBULL 4-86 
terminal characteristics 4-77 

IOTIME macro· 7-20 
ITEMIZE utility 1-13 
Iterative control statements 5-11 

JANUS 
definition 1-4, B-4 

60493800 C 



\ 
I 

\ 

/ 

file disposition 4-77 
PM line 3-40 
separator c,ard handling 2-4 

JDATE macro 7-19 
JDT ordinal 2-9 
Job 

accounting 2-17, 4-5, 4-86 
dayftle 2-16 
definition 2-1 
dependent 4-3,4>-87 
execution in system 2-9 
history 2-15 
mainframe selection 4-4 -
name 4-2 
rerun 2-15 
termination 2-14,4-49 

Job deck 
control statement section 2-4 
directive section 2-9 
name is INPUT 3-2 
separator cards 2·,3 

Job statement 4-1 

L tape (also see Copy) 
FET 6-1 
poise record 3-28 
structure 3-7, 3-30 

Labels for tapes 
(also see SI,,s, L tape) 
(also see 7-track, 9-track tape) 
default, LABEL 4-53 
definition 3-32 
density~ 3-31 
FET format 6-23 
LABEL control statement 4-50 
LABEL macro~6-24 
multi-me set 3-37 
plaeement 3-3:i 
standard 3-36 
user processing 4-68,6-11, 6-25 

LABELMS utility 3-9,4-53 
y_J..DSET control statement 2-5,4-59 

Level number 
copy to S/L tape 4-17,4-19 
in job deck 2-4 
in system-logical-record 3-5 
level 16 3-6, 7-45 
level 17 3.;5, 7-45 

LFN (see Logical file name) 
LGO 2-6 
library 

copy 4-35 

60493800 C 

create 4-35 
LIBRARY loader statement 2-5 
LIBRARY directive of EDITLIB 4-42 
list 4-41 
system use 2-4 
user. 2-5 

limit 
CPUtime 44 
LIMIT control statement 4-55 
mass storage 4-55" 

Line length OUTPUT 3-2 
USTLIB directive of EDITLIB 4-42 
LISTMF utility 4-56 
liferal 4-1 
Load 

LOAD control statement 4-56 
~map A-59 -
perman~ntfile 4.;57 . 
point of tape 3-27 
sequence 2-5 

Loader 2-5 
LOADPF utility 4-57 
Logical me name 

definition 3-1 
reserved 3-1 

Magaet-ic tape files 
(also~see S,L, SI tape) 
(also see 7-track, 9:track tape) 
characteristics D-1 
compare with disk 4-14 
density 3-31 
format D4 
job statement parameter 4-3 
labels 3-32 
off,line listing 4-16 
unit limit 4-:?~ 4-73 
usage summ.ary 3-38 

Mainframe 
definition- 1-2 
identification 44 
permanent file usage 3-17 

MAP control statement 4-59 
Mass storage (see Rotating mass storage) 
Master Jevice 

definition 3-7 
established 3-9-

Memory (see Central memory, Field length, ECS) 
MEMORY macro 7-16 

Merge with ~OPYN 4-20 f. 

Me~sage (see Comment) 
MESSAGE macro 7-17 

Index-5 • 



MLRS field 3-31, 6-17 
Mode 

error 4-60 
MODE control statement 4-60 

Mode of parameter substitution 5-24 
MODEL micro 7-10 . 
Modify permission 3-15 
Monitor 1-6 ~ - . 
MOUNT control statement 4-61 
MUJ bit 6-11 
Multi-mainframe 

definition 1-2 
permanent files 3-17, 4-7 
selection 4-4 

Multi-file set 
defined 3-37 
labels 3-37, 4-53 
list 4-56 
positioning 3-38 
request 4-67 
return 4-74 
rewind 4-74 

- Multi-read permission 3-15, 4-50 

- Name/number index 3-12 
Noise brackets 3-28 
NUCLEUS library 2-5 
NUM function 5-17 
Number base 4-2 

OPEN macro 7-38 
Operator 

communication 4-61 
console ~~ 1-7 
dr9P of job 2-15 
label processing 4-51 
pause bit 7-6 

OUTPUT file defmed 3·1 
Overflow, file 4-71 
Owncode exits 

EOI 6·18 
EP 6-10 
exit 6·3,6·19 
general 6-22 
XL 6-U 
XP 6-11 

• Index-6 

P register 4-29 
P register dump 4-29 
Parameter substitution mode 5-2~4 

Parity error 
hardware 4-60 
tape 4-67 
perman en t me 4-9 
re~covery inhibit 6:11 

Partition 
defined 3-7 
in INPUT me 2-3,3-2 
system-logical-record 3-5' 

Password (see Permission) 
PAUSE control statement- 4-61 
PERM macro 7-76 
Permanent file 

( 

(also see ALTER, ATTACH, CATALOG, EXTEND, 
PURGE, RENAME) 

access 3-13 
accounting 3-21 
CATALOG control statement 4-10 
CATALOG macro 7-75 
concepts 3-14 
definition 3-13 
device 3-8 
dump 4-32 
INTERCOM usage 3-16,3-19 
manager 3-14 
name 3-14 
parameter summary 3-18 
privacy 3-13 
read-only access 3-16 
status 4-8 
usage 3-17 

Permission 
bits in FET 6-20 
cancel 4-10 
permanent file 3-15 
other file 3-15 

PFN (see Permanent file) 
Phase encoded tape ,­

noise record 3-28 
structure D-7 

Physical record unit (see PRU) 
PMline 340 
POSMF macro 7-39 
PPU 1-6 
Prefix table and COPYN 4-21 
Print file 

COPYBCD 4-16 

;~ 

\ -.;, 

/f 
60493800 C \t, 



COPYSBF 4-25 
definition 3-40 
OUTPUT 3-2 
special form 4-75 
usage 3-40 
zero-byte records 3-7 

Private device set 
definition 3-7 
examples 3-10 
INTERCOM 3-20 
usage 3-9 

.PROC statement 5-19 
Procedure 

body 5-21 
call 5-23 
call and return 5-22 
call and substitution examples 5-26 
commands 5-30 
comments 5-32 
header statement 5-19 
residence 5-19 
return 5-28 
structure 5-19 

Product set 1-1 
PRU 

definition 3-5 
device copy 4-16,4-17 
permanent file end 4-6 
short PRU 3-5 
SI tape 3-29 
size field 6-14 
tape D-7 
zero-length PRU 3-5 

PUBLIC ID 3-14 
Public device set 

definition 3-7 
file buffering 3-26 
usage 3-8 

Punch card format D-1 
PUNCH file 3~2 

PUNCHB file 3-2 
PURGE 

control statement 4-62 
macro 7-75 

P80C file 3-3 

Queue 
input 2-1 
output 2-1 
permanent file 3-16 
tape 2-8 

60493800 C 

Queue set 
defined 3-8 
specification 4-6 

RA (see Reference address) 
RA.xxx symbols 7-10 
RA+1 7-1 
Random bit 

in FET 6-9 
use 3-11 

Random mes (also see Indexed file) 
definition 3-11 
device 3-11 
R bit 6-9 

RANTOSEQ directive of EDITLIB 442 
RB conflict 4-9, 4-62 
RBR 4-54 
RBT 3-8 
Read (also see Multi-read) 

permission 3-15 
READ macro 745 
READIN macro 7-49 
READN macro 748 
READNS macro 746 
READSKP macro 747 

Recall 
concept 7-2 
RECALL macro 7 -18 

Record (also see System-logical-record) 
terminator 3-5 
type 7-8 

Record Manager (see CYBER Record Manager) 
RECOVERY utility 4-62 
RECOVR macro 7-28 
REDUCE control statement 4-63 
Reference _address 

defined 14 
o to 100 contents 7-6 

Register 
CPC 6-22 
defined 1-6 
dump 4-29 
save 7-12 
system action macro use 7-13 

Remote 
batch jobs 2-1 
file routing 4-28,4-75 
terminals 1-10 

RENAME 
control statement 4-63 
macro 7-75 

Index-7. 



REPLACE directive of EDITLIB 4-43 
REQUEST 

control statement 4-64 
macro 7-33 
vs. LABEL 4-50 

Rerun of job 2-15,4-47 
Reserved file names 3-1 
RESTART utility 4-72 
Retention period 

device set 4-6 
label 4-53 
permanent file 4-11 

RETURN 
control statement 4-73 
through CLOSE macro 7-40 

REVERT control statement 5-28 
REWIND 

control statement 4-74 
directive of COPYN 4-21 
directive of EDITLIB 4-43 
macro 7-64 

REWRITE macro 7-58 
REWRITEF macro 7-58 
REWRITER macro 7-58 
RFILEB macro 6-3 
RFILEC macro 6-3 
RFL control statement 4-74 
Ring, write 4-51,4-67 
Rolling 1-5, 2-9 
Rotating mass storage 

definition 1-7 
structure summary 3-6 

ROUTE 
control statement 4~75 
examples 4-79 
macro 7-67 

RPHR macro 7-48 
RPV call 7-30 
RTIME macro 7-19 

S tape (also see Copy) 
FET 6-1 
structure 3-30 

Save tape 4-66 
SA VEPF control statement 4-83 
Scheduler 2-9 
SCOPE 2 deck 24 
Scratch file 

definition 3-3 
disposition 3-4 
tape request 4-52,4-65,4-67 

• Index-8 

Separator cards 
in INPUT file 3-2 
in job deck 2-3 

Separator characters 4-1 
SEQTORAN directive of EDITLIB 4-43 
SET control statement 5-13 
SETJCI macro 7-25 
SETAL directive of EDITLIB 4-44 
SETFL directive of EDITLIB 4-44 
SETFLO directive of EDITLIB 4-44 
SETNAME control statement 4-8,4-84 
Short PRU 3-5 
SI tape (also see Copy) 

structure 3-29 
SKIP control statement 5-10 
Skip count field 6-20 
SKIPB 

control statement 4-84 
directive of EDITLIB 4-45 
macro 7-62 

SKIPF 
control statement 4-85 
directive of EDITLIB 4-45 
macro 7-62 

SKIPR directive of COPYN 4-22 
Special-named files 

definition 3-1 
disposition at job end 4-76 
evict 4-76 
RETURN 4-74 

ST parameter 4 d 4 
Status 

and control register 1-7 
field of FET 6-5 
macros 7-18 
permanent file audit 4-8 
STATUS macro 7-20 
user library 4-39 

STORE INTERCOM command 3-19 
Substitution mode, parameter 5-24 
SUMMARY control statement 4-86 
Swapping 1-5 
Switch 

bits 7-6 
SWITCH control statement 4-86 

Symbolic names 5-5 
Syntax 

control statement 4-1 
COPYN directives 4-21 
EDITLIB directives 4-36 
job statement 4-1 

SYSBULL control statement 4-86 
SYSCOM macro 7-10 

60493800 C 



SYSTEM macro 7-11 
System-logical-record 

definition 3-5 
equivalent SIL tape 3-7 

Tape (see Magnetic tape) 
Tape mark 

definition 3-27 
end-of-information 3-29, 3-30 
WRITEF 7-54 

Tape unit 3-31 
Terminals 1-10 

(also see INTERCOM) 
Terminator 4-1 
Termination of job 2-14, 4-49 
Text 

EDITLIB considerations 4-35 
macro location 7-10 
system 7-76 

TIME macro 7-20 
Time 

I limit specification 4-2.1 
limit recovery 7-28 

TRANSF control statement 4-87 
macro 7-27 

TRANSPF utility 4-89 
Turnkey permission 3-1 5 

U label 4-68 
UBC field 3-31, 6-16 
Unit record .equipment 

hardware 1-8 
request 4-70 

Unload 
tape inhibit 4-66 
UNLOAD control statement 4-92 
UNLOAD macro 7-65 

UP bit 6-10 
UPDATE product summary 1-12 
User library 

creation 4-35 
Utilities 

common product 1-13 
copy (see Copy) 
FORM 1-12 
permanent file 3-19 

60493800 D 

Volume 
copy 4-17 
defined 0-7 

Volume serial number 
device set 4-5 
tape 4-67 
usage 2-8, 3-38 

VOL label 3-36 
VSN control statement 4-92 

WEOF directive of COPYN 4-22 
WHILE control statement 5-11 
Working storage 6-14 
WPHR macro 7-54 
WRITE macro 7-52 
WRITEF macro 7-54 
WRITEN macro 7 _l\ 5 
WRITER macro 7-53 
WRITIN macro 7-60 
WRITOUT macro 3-12, 7-56 
WTMK 7-10 

X tape conversion 4-25 
XJ instruction 7-1 

Y label 4-51, 4-68 

Z label 3-32,4-51,4-68 
Zero-byte terminated records 

COPYBCD utility 4-16 
COPYSBF utility 4-25 
JANUS files 1-8 

Zero-length PRU 3-5 

3000 series labels 4-51,4-68, 6-23 
7-track tape 

request 4-66 
structure 3-31 

9-track tape 
request 4-68 
structure 3-31 

Index-9 





II) 
..... 
..... ..... 

> 

'" IX 

0-

: t 
« 
« I 

COMMENT SHEET 

MANUAL TI1iE CDC NOS/BE 1 Reference Manual 

PUBLICATION NO. 60493800 REVISION _D ____ _ 

FROM: NAME: 

BUSINESS ADDRESS: ____ ,_,_, _______________________ _ 

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A. 
FOLD ON DOTTED LINES AND STAPLE 



STAPl1: 'STAPLE 

OLD fOLD 

.------------------------------------------~ 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY If MAILED IN U.S.A. 

POSTAGE Will BE PAID BY 

CONTROL DATA CORPORATION 
Publications and Graphics Division 

ARH219 
4201 North Lexington Avenue 

Saint Paul, Minnesota 55112 

fIRST CLASS 
PEIMIT NO. 8241 

MINNEAPOLIS, MINN. 

fOLD 

J 
I 

III 
Z 
::; 
o z 
9 
~ ... =» 
u 



MACRO INDEX 

ABORT 7-13 PERM 7-76 
ALTER 7-72 POSMF 7-39 
ATTACH 7-72 PURGE 7-72 

PUT 7-9 
BKSP 7-63 PUTP 7-9 
BKSPRU 7-64 

READ 745 
CATALOG 7-72 READIN 749 
CHECK 7-9 READN 748 
CHECKPT 7-31 READNS 746 
CLOCK 7-18 READSKP 747 
CLOSE 740 RECALL 7-18 
CLOSEM 7-9 RECOVR 7-28 
CLOSER 742 RENAME 7-72 
CONTRLC 7-27 REPLACE 7-10 

REQUEST 7-33 
DATE 7-18 REWIND 7-64 
DELETE 7-10 REWINDM 7-9 
DISPOSE 7-66 REWRITE 7-58 

REWRITEF 7-58 
ENDFILE 7-10 REWRITER 7-58 
ENDRUN 7-14 RFILEB 6-3 
EVICT 7-65 RFILEC 6-3 
EXTEND 7-72 ROUTE 7-67 

RPHR 748 
FDB 7-72 RTIME 7-18 
FETCH 7-9 
FILE 7-9 SEEK 7-9 
FILEB 6-3 SETJCI 7-25 
FILEC 6-3 SKIP 7-9 
FILESTAT 7-21 SKIPB 7-62 
FILINFO 7-22 SKIPF 7-62 

STATUS 7-20 
GET 7-9 STORE 7-9 
GETJCI 7-24 SYSCOM 7-10 
GETMC 7-15 SYSTEM 7-11 
GETP 7-9 

TIME 7-18 
IOTIME 7-18 TRANSF 7-27 

JDATE 7-18 UNLOAD 7-65 

LABEL 6-24 WEOR 7-10 
WPHR 7-54 

MEMORY 7-16 WRITE 7-52 
MESSAGE 7-17 WRITEF 7-54 

WRITEN 7-55 
OPEN 7-38 WRITER 7-53 
OPENM 7-9 WRITIN 7-60 

WRITOUT 7-56 
WTMK 7-10 



CORPORATE HEADQUARTERS, P.O. BOX O,IIIN\lUPOLIS,IIINNESOTA 55440 LItHO IN U.S .A. 
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD 

I 

~~ 
CO~OL DATA CORfO~TlON 


